scholarly journals Fibroin Delays Chilling Injury of Postharvest Banana Fruit via Enhanced Antioxidant Capability during Cold Storage

Metabolites ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 152 ◽  
Author(s):  
Juan Liu ◽  
Fengjun Li ◽  
Lei Liang ◽  
Yueming Jiang ◽  
Junjia Chen

storage Banana fruit after harvest is susceptible to chilling injury, which is featured by peel browning during cold, and it easily loses its nutrition and economic values. This study investigated the role of fibroin treatment in delaying peel browning in association with the antioxidant capability of postharvest banana fruit during cold storage. Compared to the control fruit, fibroin-treated fruit contained higher amounts of Pro and Cys during overall storage as well as higher glutathione (GSH) during the middle of storage. Conversely, fibroin-treated fruit exhibited a lower peel browning index and reactive oxygen species (ROS) level during overall storage as well as lower contents of hexadecanoic acid and octadecanoic acid by the end of storage compared to control fruit. In addition, fibroin-treated banana fruit showed higher activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) in relation to upregulation SOD, CAT, and GR as well as peroxiredoxins (MT3 and GRX) during the middle of storage. These results highlighted the role of fibroin treatment in reducing peel browning by enhancing the antioxidant capability of harvested banana fruit during cold storage.

2020 ◽  
Vol 21 (5) ◽  
pp. 477-498
Author(s):  
Yongfeng Chen ◽  
Xingjing Luo ◽  
Zhenyou Zou ◽  
Yong Liang

Reactive oxygen species (ROS), an important molecule inducing oxidative stress in organisms, play a key role in tumorigenesis, tumor progression and recurrence. Recent findings on ROS have shown that ROS can be used to treat cancer as they accelerate the death of tumor cells. At present, pro-oxidant drugs that are intended to increase ROS levels of the tumor cells have been widely used in the clinic. However, ROS are a double-edged sword in the treatment of tumors. High levels of ROS induce not only the death of tumor cells but also oxidative damage to normal cells, especially bone marrow hemopoietic cells, which leads to bone marrow suppression and (or) other side effects, weak efficacy of tumor treatment and even threatening patients’ life. How to enhance the killing effect of ROS on tumor cells while avoiding oxidative damage to the normal cells has become an urgent issue. This study is a review of the latest progress in the role of ROS-mediated programmed death in tumor treatment and prevention and treatment of oxidative damage in bone marrow induced by ROS.


2020 ◽  
Vol 16 ◽  
Author(s):  
Andrey Krylatov ◽  
Leonid Maslov ◽  
Sergey Y. Tsibulnikov ◽  
Nikita Voronkov ◽  
Alla Boshchenko ◽  
...  

: There is considerable evidence in the heart that autophagy in cardiomyocytes is activated by hypoxia/reoxygenation (H/R) or in hearts by ischemia/reperfusion (I/R). Depending upon the experimental model and duration of ischemia, increases in autophagy in this setting maybe beneficial (cardioprotective) or deleterious (exacerbate I/R injury). Aside from the conundrum as to whether or not autophagy is an adaptive process, it is clearly regulated by a number of diverse molecules including reactive oxygen species (ROS), various kinases, hydrogen sulfide (H2S) and nitric oxide (NO). The purpose this review is to address briefly the controversy regarding the role of autophagy in this setting and to examine a variety of disparate molecules that are involved in its regulation.


Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 608
Author(s):  
Domenico Nuzzo

All cells continuously generate reactive oxygen species (ROS) through the respiratory chain during the energy metabolism process [...]


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Gabriel Sigmund ◽  
Cristina Santín ◽  
Marc Pignitter ◽  
Nathalie Tepe ◽  
Stefan H. Doerr ◽  
...  

AbstractGlobally landscape fires produce about 256 Tg of pyrogenic carbon or charcoal each year. The role of charcoal as a source of environmentally persistent free radicals, which are precursors of potentially harmful reactive oxygen species, is poorly constrained. Here, we analyse 60 charcoal samples collected from 10 wildfires, that include crown as well as surface fires in forest, shrubland and grassland spanning different boreal, temperate, subtropical and tropical climate. Using electron spin resonance spectroscopy, we measure high concentrations of environmentally persistent free radicals in charcoal samples, much higher than those found in soils. Concentrations increased with degree of carbonization and woody fuels favoured higher concentrations. Moreover, environmentally persistent free radicals remained stable for an unexpectedly long time of at least 5 years. We suggest that wildfire charcoal is an important global source of environmentally persistent free radicals, and therefore potentially of harmful reactive oxygen species.


2007 ◽  
Vol 55 (2) ◽  
pp. 158-166 ◽  
Author(s):  
D SINISCALCO ◽  
C FUCCIO ◽  
C GIORDANO ◽  
F FERRARACCIO ◽  
E PALAZZO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document