scholarly journals Environmentally persistent free radicals are ubiquitous in wildfire charcoals and remain stable for years

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Gabriel Sigmund ◽  
Cristina Santín ◽  
Marc Pignitter ◽  
Nathalie Tepe ◽  
Stefan H. Doerr ◽  
...  

AbstractGlobally landscape fires produce about 256 Tg of pyrogenic carbon or charcoal each year. The role of charcoal as a source of environmentally persistent free radicals, which are precursors of potentially harmful reactive oxygen species, is poorly constrained. Here, we analyse 60 charcoal samples collected from 10 wildfires, that include crown as well as surface fires in forest, shrubland and grassland spanning different boreal, temperate, subtropical and tropical climate. Using electron spin resonance spectroscopy, we measure high concentrations of environmentally persistent free radicals in charcoal samples, much higher than those found in soils. Concentrations increased with degree of carbonization and woody fuels favoured higher concentrations. Moreover, environmentally persistent free radicals remained stable for an unexpectedly long time of at least 5 years. We suggest that wildfire charcoal is an important global source of environmentally persistent free radicals, and therefore potentially of harmful reactive oxygen species.

2015 ◽  
Vol 51 (89) ◽  
pp. 16139-16142 ◽  
Author(s):  
Yuyuan Yao ◽  
Bin Jiang ◽  
Yajun Mao ◽  
Juan Chen ◽  
Zhenfu Huang ◽  
...  

A positive role of PFRs in enhancing reactive oxygen species (ROS) generation for an extreme rate enhancement in environmental pollutant decomposition is reported.


2011 ◽  
Vol 54 (3) ◽  
pp. 97-101 ◽  
Author(s):  
Jiří Kanta

Wound healing is a complex physiological process important for tissue homeostasis. An acute injury initiates massive cell migration, proliferation and differentiation, synthesis of extracellular matrix components, scar formation and remodelling. Blood flow and tissue oxygenation are parts of the complex regulation of healing. Higher organisms utilize molecular oxygen as a terminal oxidant. This way of gaining energy for vital processes such as healing leads to the production of a number of oxygen compounds that may have a defensive or informatory role. They may be harmful when present in high concentrations. Both the lack and the excess of reactive oxygen species may influence healing negatively.


Author(s):  
Durg V. Rai ◽  
Harcharan Singh Ranu

Ovarian hormone deficiency increases the generation of reactive oxygen species. Oxidative stress due to reactive oxygen species (ROS) can cause oxidative damage to cells. Cells have a number of defense mechanisms to protect themselves from the toxicity of ROS. There is increasing evidence of the role of free radicals in bone resorption and bone loss. Ovariectomised female wistar rats had been used as the animal model for the study of osteoporosis. Even though, there are studies portraying the role of free radicals in bone loss, the defense mechanism adapted by bone in ovariectomised animals remains obscure. So, the impact of ovariectomy on the bone antioxidant system in rats was investigated. Twenty female wistar rats were taken and divided into two groups: ovariectomised and control. It had been found that a significant (p<0.001) decrease in the activity of various enzymes like CAT (catalase), SOD (superoxide dismutase) (p<0.001), GST (glutathione-s-transferase). However, an increase in the malondialdehyde levels was found to be 30% in the ovariectomised rats as compared to the controls. Thus the study elucidates the oxidative stress in bone under ovariectomy.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4666
Author(s):  
Ahmet Ozer Sehirli ◽  
Serkan Sayıner ◽  
Ugochukwu Chukwunyere ◽  
Nedime Serakinci

The cellular utilization of oxygen leads to the generation of free radicals in organisms. The accumulation of these free radicals contributes significantly to aging and several age-related diseases. Angiotensin II can contribute to DNA damage through oxidative stress by activating the NAD(P)H oxidase pathway, which in turn results in the production of reactive oxygen species. This radical oxygen-containing molecule has been linked to aging and several age-related disorders, including renal damage. Considering the role of angiotensin in aging, melatonin might relieve angiotensin-II-induced stress by enhancing the mitochondrial calcium uptake 1 pathway, which is crucial in preventing the mitochondrial calcium overload that may trigger increased production of reactive oxygen species and oxidative stress. This review highlights the role and importance of melatonin together with angiotensin in aging and age-related diseases.


Sign in / Sign up

Export Citation Format

Share Document