scholarly journals A mm-Sized Free-Floating Wireless Implantable Opto-Electro Stimulation Device

Micromachines ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 621
Author(s):  
Yaoyao Jia ◽  
Yan Gong ◽  
Arthur Weber ◽  
Wen Li ◽  
Maysam Ghovanloo

Towards a distributed neural interface, consisting of multiple miniaturized implants, for interfacing with large-scale neuronal ensembles over large brain areas, this paper presents a mm-sized free-floating wirelessly-powered implantable opto-electro stimulation (FF-WIOS2) device equipped with 16-ch optical and 4-ch electrical stimulation for reconfigurable neuromodulation. The FF-WIOS2 is wirelessly powered and controlled through a 3-coil inductive link at 60 MHz. The FF-WIOS2 receives stimulation parameters via on-off keying (OOK) while sending its rectified voltage information to an external headstage for closed-loop power control (CLPC) via load-shift-keying (LSK). The FF-WIOS2 system-on-chip (SoC), fabricated in a 0.35-µm standard CMOS process, employs switched-capacitor-based stimulation (SCS) architecture to provide large instantaneous current needed for surpassing the optical stimulation threshold. The SCS charger charges an off-chip capacitor up to 5 V at 37% efficiency. At the onset of stimulation, the capacitor delivers charge with peak current in 1.7–12 mA range to a micro-LED (µLED) array for optical stimulation or 100–700 μA range to a micro-electrode array (MEA) for biphasic electrical stimulation. Active and passive charge balancing circuits are activated in electrical stimulation mode to ensure stimulation safety. In vivo experiments conducted on three anesthetized rats verified the efficacy of the two stimulation mechanisms. The proposed FF-WIOS2 is potentially a reconfigurable tool for performing untethered neuromodulation.

2008 ◽  
Vol 2008 ◽  
pp. 1-10 ◽  
Author(s):  
J. A. Zhou ◽  
S. J. Woo ◽  
S. I. Park ◽  
E. T. Kim ◽  
J. M. Seo ◽  
...  

This article reports on a retinal stimulation system for long-term use in animal electrical stimulation experiments. The presented system consisted of an implantable stimulator which provided continuous electrical stimulation, and an external component which provided preset stimulation patterns and power to the implanted stimulator via a paired radio frequency (RF) coil. A rechargeable internal battery and a parameter memory component were introduced to the implanted retinal stimulator. As a result, the external component was not necessary during the stimulation mode. The inductive coil pair was used to pass the parameter data and to recharge the battery. A switch circuit was used to separate the stimulation mode from the battery recharging mode. The implantable stimulator was implemented with IC chips and the electronics, except for the stimulation electrodes, were hermetically packaged in a biocompatible metal case. A polyimide-based gold electrode array was used. Surgical implantation into rabbits was performed to verify the functionality and safety of this newly designed system. The electrodes were implanted in the suprachoroidal space. Evoked cortical potentials were recorded during electrical stimulation of the retina. Long-term follow-up using OCT showed no chorioretinal abnormality after implantation of the electrodes.


Author(s):  
Vipul Gupta ◽  
Alina Crudu ◽  
Yukiko Matsuoka ◽  
Samik Ghosh ◽  
Roger Rozot ◽  
...  

AbstractDesigning alternative approaches to efficiently screen chemicals on the efficacy landscape is a challenging yet indispensable task in the current compound profiling methods. Particularly, increasing regulatory restrictions underscore the need to develop advanced computational pipelines for efficacy assessment of chemical compounds as alternative means to reduce and/or replace in vivo experiments. Here, we present an innovative computational pipeline for large-scale assessment of chemical compounds by analysing and clustering chemical compounds on the basis of multiple dimensions—structural similarity, binding profiles and their network effects across pathways and molecular interaction maps—to generate testable hypotheses on the pharmacological landscapes as well as identify potential mechanisms of efficacy on phenomenological processes. Further, we elucidate the application of the pipeline on a screen of anti-ageing-related compounds to cluster the candidates based on their structure, docking profile and network effects on fundamental metabolic/molecular pathways associated with the cell vitality, highlighting emergent insights on compounds activities based on the multi-dimensional deep screen pipeline.


2018 ◽  
Author(s):  
Travis L Massey ◽  
Samantha R Santacruz ◽  
Jason F Hou ◽  
Kristofer SJ Pister ◽  
Jose M Carmena ◽  
...  

Abstract.Objective: Microwire and Utah-style neural recording arrays are the predominant devices used for cortical neural recording, but the implanted electrodes cause a significant adverse biological response and suffer from well-studied performance degradation. Recent work has demonstrated that carbon fiber electrodes do not elicit this same adverse response, but these existing designs are not practically scalable to hundreds or thousands of recording sites. We present technology that overcomes these issues while additionally providing fine electrode pitch for spatial oversampling.Approach: We present a 32-channel carbon fiber monofilament-based intracortical neural recording array fabricated through a combination of bulk silicon microfabrication processing and microassembly. This device represents the first truly two-dimensional carbon fiber neural recording array. The density, channel count, and size scale of this array are enabled by an out-of-plane microassembly technique in which individual fibers are inserted through metallized and isotropically conductive adhesive-filled holes in an oxide-passivated microfabricated silicon substrate.Main results: Five-micron diameter fibers are spaced at a pitch of 38 microns, four times denser than state of the art one-dimensional arrays. The fine diameter of the carbon fibers affords both minimal cross-section and nearly three orders of magnitude greater lateral compliance than standard tungsten microwires. Typical 1 kHz impedances are on the order of hundreds of kiloohms, and successful in vivo recording is demonstrated in the motor cortex of a rat. 22 total units are recorded on 20 channels, with unit SNR ranging from 0.85 to 4.2.Significance: This is the highest density microwire-style electrode array to date, and this fabrication technique is scalable to a larger number of electrodes and allows for the potential future integration of microelectronics. Large-scale carbon fiber neural recording arrays are a promising technology for reducing the inflammatory response and increasing the information density, particularly in neural recording applications where microwire arrays are already used.


2020 ◽  
Vol 27 ◽  
Author(s):  
Karim Abbasi ◽  
Parvin Razzaghi ◽  
Antti Poso ◽  
Saber Ghanbari-Ara ◽  
Ali Masoudi-Nejad

Drug-target Interactions (DTIs) prediction plays a central role in drug discovery. Computational methods in DTIs prediction have gotten more attention because carrying out in vitro and in vivo experiments on a large scale is costly and time-consuming. Machine learning methods, especially deep learning, are widely applied to DTIs prediction. In this study, the main goal is to provide a comprehensive overview of deep learning-based DTIs prediction approaches. Here, we investigate the existing approaches from multiple perspectives. We explore these approaches to find out which deep network architectures are utilized to extract features from drug compound and protein sequences. Also, the advantages and limitations of each architecture are analyzed and compared. Moreover, we explore the process of how to combine descriptors for drug and protein features. Likewise, a list of datasets that are commonly used in DTIs prediction is investigated. Finally, current challenges are discussed and a short future outlook of deep learning in DTI prediction is given.


Author(s):  
Ieva Vebraite-Adereth ◽  
Moshe David-Pur ◽  
David Rand ◽  
Eric Glowacki ◽  
Yael Hanein

Abstract Objective. Understanding how the retina converts a natural image or an electrically stimulated one into neural firing patterns is the focus of on-going research activities. Ex vivo, the retina can be readily investigated using multi electrode arrays. However, multi electrode array recording and stimulation from an intact retina (in the eye) has been so far insufficient. Approach. In the present study, we report new soft carbon electrode arrays suitable for recording and stimulating neural activity in an intact retina. Screen-printing of carbon ink on 20 µm polyurethane (PU) film was used to realize electrode arrays with electrodes as small as 40 µm in diameter. Passivation was achieved with a holey membrane, realized using laser drilling in a thin (50 µm) PU film. Plasma polymerized EDOT was used to coat the electrode array to improve the electrode specific capacitance. Chick retinas, embryonic stage day 13, both ex-planted and intact inside an enucleated eye, were used. Main results. A novel fabrication process based on printed carbon electrodes was developed and yielded high capacitance electrodes on a soft substrate. Ex vivo electrical recording of retina activity with carbon electrodes is demonstrated. With the addition of organic photo-capacitors, simultaneous photo-electrical stimulation and electrical recording was achieved. Finally, electrical activity recordings from an intact chick retina (inside enucleated eyes) were demonstrated. Both photosensitive retinal ganglion cell responses and spontaneous retina waves were recorded and their features analyzed. Significance. Results of this study demonstrated soft electrode arrays with unique properties, suitable for simultaneous recording and photo-electrical stimulation of the retina at high fidelity. This novel electrode technology opens up new frontiers in the study of neural tissue in vivo.


MRS Advances ◽  
2019 ◽  
Vol 4 (21) ◽  
pp. 1237-1244 ◽  
Author(s):  
Jacob Hadley ◽  
Jack Hirschman ◽  
Bashir I. Morshed ◽  
Firouzeh Sabri

AbstractAerogels are light-weight porous materials that can tolerate the processing steps required for designing and creating an electric circuit such that the aerogel can be utilized as a substrate for device fabrication. Previous studies have shown the biostability and biocompatibility of polyurea crosslinked silica aerogels both in vivo and in vitro and have demonstrated the potential use of aerogels in biomedical applications. In vitro studies have shown that in the presence of an applied electric field neurites regeneration rate was greater on crosslinked silica aerogels than on tissue culture petridish used as a positive control. Currently, epineural suturing and nerve grafting are the gold standards for surgical reconstruction of injured nerves. However, because they rely on passive mechanisms for reapproximating the distal and proximal terminals they often lead to partial or no recovery leaving room for improvement. The present study investigates the feasibility of a wireless aerogel–based electrically-stimulating implant intended for nerve repair applications. Here the authors report on RF coupling between a secondary coil and a primary coil to wirelessly energize an interdigitated electrode array consisting of eleven interlocking fingers, created on a silica aerogel substrate. The coupling strength was tested both in air and in an animal model, as a function of distance and will be reported. This study focuses on in vivo evaluation and feasibility assessment of a novel active 3-D aerogel-based peripheral nerve repair device. The device utilizes induced EMF to establish a current (hence electrical stimulation) in predetermined pathways where nerve stumps will be confined to. Fundamental differences between in vitro and in vivo models necessitate the in vivo approach. The novel inductively-powered electrical stimulation aerogel-based device utilizes previously established 3-D confinement method for immobilization of nerve stumps, taking advantage of the mesoscopic surface roughness, unique to aerogels. The technique is tested on a mechanically strong, lightweight, porous, and biostable aerogel. Lithographic techniques, gold (Au) thin film metallization, and Faraday induction is used for circuit design, development, and activation.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
P. Bhatti ◽  
J. Van Beek-King ◽  
A. Sharpe ◽  
J. Crawford ◽  
S. Tridandapani ◽  
...  

We present an effective method for tailoring the flexibility of a commercial thin-film polymer electrode array for intracochlear electrical stimulation. Using a pneumatically driven dispensing system, an average232±64 μm (mean ± SD) thickness layer of silicone adhesive coating was applied to stiffen the underside of polyimide multisite arrays. Additional silicone was applied to the tip to protect neural tissue during insertion and along the array to improve surgical handling. Each array supported 20 platinum sites (180 μm dia., 250 μm pitch), spanning nearly 28 mm in length and 400 μm in width. We report an average intracochlear stimulating current threshold of170±93 μA to evoke an auditory brainstem response in 7 acutely deafened felines. A total of 10 arrays were each inserted through a round window approach into the cochlea’s basal turn of eight felines with one delamination occurring upon insertion (preliminary results of thein vivodata presented at the 48th Annual Meeting American Neurotology Society, Orlando, FL, April 2013, and reported in Van Beek-King 2014). Using microcomputed tomography imaging (50 μm resolution), distances ranging from 100 to 565 μm from the cochlea’s central modiolus were measured. Our method combines the utility of readily available commercial devices with a straightforward postprocessing step on the order of 24 hours.


Sign in / Sign up

Export Citation Format

Share Document