scholarly journals A Small Hybrid Power System of Photovoltaic Cell and Sodium Borohydride Hydrolysis-Based Fuel Cell

Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 278
Author(s):  
Mingxue Li ◽  
Huichao Deng ◽  
Yufeng Zhang ◽  
Chenjun Hou

Although the hybrid power system that combines a photovoltaic cell and a lithium-ion battery is increasingly mature and practical, long-lifetime auxiliary power will be still needed in severe weather conditions. A small-volume hydrogen–oxygen fuel cell system based on the hydrolysis of NaBH4 is designed. The fuel cell system contains a tiny hydrogen generator, a hydrogen cleaner, and a small fuel cell stack consisting of three units in series. The relationship between the amount of catalyst and output performance is discussed. The long-time discharging results indicate that the fuel cell system has high power capacity. The compact design allows the fuel cell system to integrate the structure with a photovoltaic cell and lithium-ion cell and forms a hybrid power system with a small package. The power management circuit for these power sources without logic devices is designed and tested. The control strategy selects the photovoltaic–battery subsystem as the primary power source, and the fuel cell subsystem works as the backup power source to handle the circumstance when the energy stored in the battery is exhausted. The test results show that the power management system could switch the power supply automatically and timely under various emergency conditions, and the output voltage remains stable all the time.

Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6111
Author(s):  
Nicu Bizon ◽  
Mircea Raceanu ◽  
Emmanouel Koudoumas ◽  
Adriana Marinoiu ◽  
Emmanuel Karapidakis ◽  
...  

In this paper, the optimal and safe operation of a hybrid power system based on a fuel cell system and renewable energy sources is analyzed. The needed DC power resulting from the power flow balance on the DC bus is ensured by the FC system via the air regulator or the fuel regulator controlled by the power-tracking control reference or both regulators using a switched mode of the above-mentioned reference. The optimal operation of a fuel cell system is ensured by a search for the maximum of multicriteria-based optimization functions focused on fuel economy under perturbation, such as variable renewable energy and dynamic load on the DC bus. Two search controllers based on the global extremum seeking scheme are involved in this search via the remaining fueling regulator and the boost DC–DC converter. Thus, the fuel economy strategies based on the control of the air regulator and the fuel regulator, respectively, on the control of both fueling regulators are analyzed in this study. The fuel savings compared to fuel consumed using the static feed-forward control are 6.63%, 4.36% and 13.72%, respectively, under dynamic load but without renewable power. With renewable power, the needed fuel cell power on the DC bus is lower, so the fuel cell system operates more efficiently. These percentages are increased to 7.28%, 4.94% and 14.97%.


Author(s):  
Shiba Ranjan Paital ◽  
Pratap Chandra Pradhan ◽  
Asit Mohanty ◽  
Prakash K. Ray ◽  
Meera Viswavandya

Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1889 ◽  
Author(s):  
Nicu Bizon ◽  
Valentin Alexandru Stan ◽  
Angel Ciprian Cormos

In this paper, a systematic analysis of seven control topologies is performed, based on three possible control variables of the power generated by the Fuel Cell (FC) system: the reference input of the controller for the FC boost converter, and the two reference inputs used by the air regulator and the fuel regulator. The FC system will generate power based on the Required-Power-Following (RPF) control mode in order to ensure the load demand, operating as the main energy source in an FC hybrid power system. The FC system will operate as a backup energy source in an FC renewable Hybrid Power System (by ensuring the lack of power on the DC bus, which is given by the load power minus the renewable power). Thus, power requested from the batteries’ stack will be almost zero during operation of the FC hybrid power system based on RPF-control mode. If the FC hybrid power system operates with a variable load demand, then the lack or excess of power on the DC bus will be dynamically ensured by the hybrid battery/ultracapacitor energy storage system for a safe transition of the FC system under the RPF-control mode. The RPF-control mode will ensure a fair comparison of the seven control topologies based on the same optimization function to improve the fuel savings. The main objective of this paper is to compare the fuel economy obtained by using each strategy under different load cycles in order to identify which is the best strategy operating across entire loading or the best switching strategy using two strategies: one strategy for high load and the other on the rest of the load range. Based on the preliminary results, the fuel consumption using these best strategies can be reduced by more than 15%, compared to commercial strategies.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1660
Author(s):  
Seydali Ferahtia ◽  
Ali Djeroui ◽  
Tedjani Mesbahi ◽  
Azeddine Houari ◽  
Samir Zeghlache ◽  
...  

This paper aims at presenting an energy management strategy (EMS) based upon optimal control theory for a battery–supercapacitor hybrid power system. The hybrid power system consists of a lithium-ion battery and a supercapacitor with associated bidirectional DC/DC converters. The proposed EMS aims at computing adaptive gains using the salp swarm algorithm and load following control technique to assign the power reference for both the supercapacitor and the battery while achieving optimal performance and stable voltage. The DC/DC converter model is derived utilizing the first-principles method and computes the required gains to achieve the desired power. The fact that the developed algorithm takes disturbances into account increases the power elements’ life expectancies and supplies the power system with the required power.


Sign in / Sign up

Export Citation Format

Share Document