scholarly journals Optical Fiber Sensor for Temperature and Strain Measurement Based on Multimode Interference and Square-Core Fiber

Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1239
Author(s):  
Kun Wang ◽  
Xingchen Dong ◽  
Patrick Kienle ◽  
Maximilian Fink ◽  
Wolfgang Kurz ◽  
...  

A variety of specialty fibers such as no-core fiber (NCF) have already been studied to reveal their sensing abilities. In this work, we investigate a specialty fiber, square-core fiber, for temperature and strain sensing. A simple single-mode–multimode–single-mode (SMS) fiber sensor was fabricated, consisting of a 30-cm-long square-core fiber. The experimental results indicate that the maximal wavelength-temperature and wavelength-strain sensitivities are −15.3 pm/∘C and −1.5 pm/με, respectively, while the maximal power-temperature and power-strain sensitivities are 0.0896 dBm/∘C and 0.0756 dBm/με. Analysis of the results suggests that the fiber sensor has the potential to be used as a high-sensitivity temperature sensor with a low strain sensitivity.

2020 ◽  
Vol 20 (11) ◽  
pp. 5915-5920
Author(s):  
Rui Zhou ◽  
Xueguang Qiao ◽  
Ruohui Wang ◽  
Fengyi Chen ◽  
Wenwen Ma

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7778
Author(s):  
Diana Pereira ◽  
Jörg Bierlich ◽  
Jens Kobelke ◽  
Marta S. Ferreira

Antiresonant hollow core fibers (ARHCFs) have gained some attention due to their notoriously attractive characteristics on managing optical properties. In this work, an inline optical fiber sensor based on a hollow square core fiber (HSCF) is proposed. The sensor presents double antiresonance (AR), namely an internal AR and an external AR. The sensor was designed in a transmission configuration, where the sensing head was spliced between two single mode fibers (SMFs). A simulation was carried out to predict the behaviors of both resonances, and revealed a good agreement with the experimental observations and the theoretical model. The HSCF sensor presented curvature sensitivities of −0.22 nm/m−1 and −0.90 nm/m−1, in a curvature range of 0 m−1 to 1.87 m−1, and temperature sensitivities of 21.7 pm/°C and 16.6 pm/°C, in a temperature range of 50 °C to 500 °C, regarding the external resonance and internal resonance, respectively. The proposed sensor is promising for the implementation of several applications where simultaneous measurement of curvature and temperature are required.


2016 ◽  
Vol 14 (5) ◽  
pp. 050604-50608
Author(s):  
Zaihang Yang Zaihang Yang ◽  
Hao Sun Hao Sun ◽  
Tingting Gang Tingting Gang ◽  
Nan Liu Nan Liu ◽  
Jiacheng Li Jiacheng Li ◽  
...  

2012 ◽  
Author(s):  
Ricardo M. André ◽  
Claudecir R. Biazoli ◽  
Susana O. Silva ◽  
Manuel B. Marques ◽  
Cristiano M. B. Cordeiro ◽  
...  

2018 ◽  
Vol 30 (14) ◽  
pp. 1337-1340 ◽  
Author(s):  
Ziyang Zhang ◽  
Julia Fiebrandt ◽  
Dionne Haynes ◽  
Yu Wang ◽  
Kai Sun ◽  
...  

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 182658-182663 ◽  
Author(s):  
Zhiyang Wu ◽  
Shuang Wang ◽  
Junfeng Jiang ◽  
Kun Liu ◽  
Tiegen Liu

2016 ◽  
Vol 78 (3) ◽  
Author(s):  
Baktiar Musa ◽  
Yasmin Mustapha Kamil ◽  
Muhammad Hafiz Abu Bakar ◽  
Ahmad Shukri Mohd Noor ◽  
Alyani Ismail ◽  
...  

A temperature sensor using single-mode tapered fiber is presented. To better understand the behaviour of a tapered optical fiber, transmission experiments with different taper profiles, specifically waist length were performed. The effects of taper profiles on the sensitivity of the sensor were also investigated. It is demonstrated that careful selection of the taper profile can increase the sensitivity of the sensor. In our experiment, a good temperature sensing result was achieved using the optimum parameter. The best sensitivity achieved was 45.5 pm/°C that measured the range of temperature from 30°C to 120°C. The fabricated sensors are easy to fabricate and relatively low cost. Our results indicate that the tapered fiber based temperature sensor has high sensitivity and good repeatability.  


Sign in / Sign up

Export Citation Format

Share Document