scholarly journals High-Sensitivity Temperature Sensor Based on Microsphere Cavity in Super Larger Thermo-Optic Coefficient Germanium-core Fiber

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 182658-182663 ◽  
Author(s):  
Zhiyang Wu ◽  
Shuang Wang ◽  
Junfeng Jiang ◽  
Kun Liu ◽  
Tiegen Liu
2021 ◽  
Vol 11 (15) ◽  
pp. 7103
Author(s):  
Weihao Lin ◽  
Shengjie Zhou ◽  
Yibin Liu ◽  
Mang I. Vai ◽  
Liyang Shao

An optical fiber temperature sensor based on Mach–Zehnder interferometer and thermo-optic effect of the liquid crystal (LC) in fiber ring laser (FRL) system is proposed and experimentally demonstrated. The LC is infiltrated into the core of hollow core fiber, and the resonant wavelength is more sensitive to temperature variation due to the interaction between the incident light and the cavity infiltrating liquid crystal with high thermal light coefficient. Meanwhile, the FRL system was further used to make the sensor have good performance in the case of high signal-to-noise ratio (∼35 dB), narrow half-height width (FWHM = 0.15 nm), and high sensitivity in the temperature range from 20 °C to 50 °C, with the maximum sensitivity of 1.318 nm/°C. As far as we know, in the FRL system, the liquid crystal material has a better temperature sensing performance than the previous fiber. Nevertheless, the system has the advantages of good repeatability, low cost, simple production, small volume, high sensitivity. In marine microbial culture and detection, it is necessary to carry out high sensitivity measurement within a small temperature variation range. This reliable and excellent temperature performance has a potential application prospect.


2021 ◽  
Vol 33 (23) ◽  
pp. 1293-1296
Author(s):  
Min Shao ◽  
Rong Zhang ◽  
Hong Gao ◽  
Yinggang Liu ◽  
Xueguang Qiao ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1239
Author(s):  
Kun Wang ◽  
Xingchen Dong ◽  
Patrick Kienle ◽  
Maximilian Fink ◽  
Wolfgang Kurz ◽  
...  

A variety of specialty fibers such as no-core fiber (NCF) have already been studied to reveal their sensing abilities. In this work, we investigate a specialty fiber, square-core fiber, for temperature and strain sensing. A simple single-mode–multimode–single-mode (SMS) fiber sensor was fabricated, consisting of a 30-cm-long square-core fiber. The experimental results indicate that the maximal wavelength-temperature and wavelength-strain sensitivities are −15.3 pm/∘C and −1.5 pm/με, respectively, while the maximal power-temperature and power-strain sensitivities are 0.0896 dBm/∘C and 0.0756 dBm/με. Analysis of the results suggests that the fiber sensor has the potential to be used as a high-sensitivity temperature sensor with a low strain sensitivity.


2020 ◽  
Vol 69 (10) ◽  
pp. 8494-8499 ◽  
Author(s):  
Xue Zhou ◽  
Shuguang Li ◽  
Xuegang Li ◽  
Xin Yan ◽  
Xuenan Zhang ◽  
...  

2020 ◽  
Vol 303 ◽  
pp. 111696 ◽  
Author(s):  
Jing Yang ◽  
Chunying Guan ◽  
Peixuan Tian ◽  
Rang Chu ◽  
Peng Ye ◽  
...  

Author(s):  
A. S. Rysbaev ◽  
M. T. Normurodov ◽  
A. M. Rakhimov ◽  
Z. A. Tursunmetova ◽  
A. K. Tashatov

2020 ◽  
Vol 315 ◽  
pp. 112341
Author(s):  
Zhaojun Liu ◽  
Bian Tian ◽  
Xu Fan ◽  
Jiangjiang Liu ◽  
Zhongkai Zhang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yazhou Wang ◽  
Yuyang Feng ◽  
Abubakar I. Adamu ◽  
Manoj K. Dasa ◽  
J. E. Antonio-Lopez ◽  
...  

AbstractDevelopment of novel mid-infrared (MIR) lasers could ultimately boost emerging detection technologies towards innovative spectroscopic and imaging solutions. Photoacoustic (PA) modality has been heralded for years as one of the most powerful detection tools enabling high signal-to-noise ratio analysis. Here, we demonstrate a novel, compact and sensitive MIR-PA system for carbon dioxide (CO2) monitoring at its strongest absorption band by combining a gas-filled fiber laser and PA technology. Specifically, the PA signals were excited by a custom-made hydrogen (H2) based MIR Raman fiber laser source with a pulse energy of ⁓ 18 μJ, quantum efficiency of ⁓ 80% and peak power of ⁓ 3.9 kW. A CO2 detection limit of 605 ppbv was attained from the Allan deviation. This work constitutes an alternative method for advanced high-sensitivity gas detection.


Sign in / Sign up

Export Citation Format

Share Document