scholarly journals Analysis of the Influence of Ferromagnetic Material on the Output Characteristics of Halbach Array Energy-Harvesting Structure

Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1541
Author(s):  
Xiangyong Zhang ◽  
Haipeng Liu ◽  
Yunli He ◽  
Tingrui Peng ◽  
Bin Su ◽  
...  

Due to the particular arrangement of permanent magnets, a Halbach array has an significant effect of magnetism and magnetic self-shielding. It can stretch the magnetic lines on one side of the magnetic field to obtain an ideal sinusoidal unilateral magnetic field. It has a wide application range in the field of energy harvesting. In practical applications, magnetic induction intensity of each point in magnetic field is not only related to the induced current and conductor but also related to the permeability of the medium (also known as a magnetic medium) in the magnetic field. Permeability is the physical quantity that represents the magnetism of the magnetic medium, which indicates the resistance of magnetic flux or the ability of magnetic lines to be connected in the magnetic field after coil flows through current in space or in the core space. When the permeability is much greater than one, it is a ferromagnetic material. Adding a ferromagnetic material in a magnetic field can increase the magnetic induction intensity B. Iron sheet is a good magnetic material, and it is easy to magnetize to generate an additional magnetic field to strengthen the original magnetic field, and it is easy to obtain at low cost. In this paper, in order to explore the influence of ferromagnetic material on the magnetic field and energy harvesting efficiency of the Halbach array energy harvesting structure, iron sheets are installed on the periphery of the Halbach array rotor. Iron sheet has excellent magnetic permeability. Through simulation, angle between iron sheet and Halbach array, radian size of iron sheet itself and distance between iron sheet and Halbach array can all have different effects on the magnetic field of the Halbach array. It shows that adding iron sheets as a magnetic medium could indeed change the magnetic field distribution of the Halbach array and increase energy harvesting efficiency. In this paper, a Halbach array can be used to provide electrical power for passive wireless low-power devices.

2014 ◽  
Vol 596 ◽  
pp. 67-71
Author(s):  
Xiu Quan Liu ◽  
Yan Hong Li

the magnetic dipole model of the cylindrical permanent magnet was introduced. Then, based on Ansoft software, the simulation model of the cylindrical permanent magnet was established, and the influence of some parameters, such as the height, radius and magnetization direction on the magnetic induction intensity ,were studied; at the same time, under these two models the calculation was compared, the result shows the the magnetic dipole model is applied on condition that distance is nine times greater than the cylindrical permanent magnet size.


Author(s):  
Feng Jiang ◽  
Shulin Liu ◽  
Shaojie Xin ◽  
Hongli Zhang

Abstract In this paper, an analytical model for a metal rod with a coating layer is proposed to evaluate circumferential crack from the signals of the surface magnetic field. In the proposed model, magnetic vector equations for four regions of space were built, and series expressions of the magnetic field were proposed by the truncated region eigenfunction method. The calculation results can show the three-dimensional distribution of axial and radial magnetic induction intensities on the surface of a metal rod clearly. In addition, the analytical model is verified by using comsol finite element simulation, which also demonstrates that induced eddy currents on the inner surface of the metal rod with cracks appear to be propelled toward the inner layer of the metal rod and the presence of a circumferential crack directly causes a decrease in the induced eddy current on the inner surface of the rod. The results calculated from the analytical model indicated that the model is capable of providing an accurate variation in the magnetic field due to circumferential cracks at different depths. The analytical results showed that the radial magnetic induction intensity increases by 0.16 × 10−3 T, while the axial magnetic induction intensity decreases by 0.3 × 10−3 T as the crack depth increases from 0 to 3 mm.


2011 ◽  
Vol 181-182 ◽  
pp. 183-188 ◽  
Author(s):  
Cheng Wu Lin ◽  
Fang Dong ◽  
Hao Zheng ◽  
Hua Yan

This paper introduced working principle of dual-coil self-sensing actuator based on magnetically controlled shape memory alloy (MSMA). The ANSYS software was used to establish the finite element model of MSMA dual-coil self-sensing actuator. Edge element method was adopted to analyze the MSMA dual-coil self-sensing actuator's 3-D static magnetic field under the influence of different excitation voltages. The analysis obtained MSMA and silicon steel sheet distribution of magnetic induction intensity and the magnetic field intensity, has further confirmed the reliability of MSMA dual-coil self-sensing actuator, and has given the MSMA length relations along with the magnetic induction intensity changes. The results show that magnetic field analysis has certain reference value to the MSMA practical application.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 439-446
Author(s):  
Gildas Diguet ◽  
Gael Sebald ◽  
Masami Nakano ◽  
Mickaël Lallart ◽  
Jean-Yves Cavaillé

Magneto Rheological Elastomers (MREs) are composite materials based on an elastomer filled by magnetic particles. Anisotropic MRE can be easily manufactured by curing the material under homogeneous magnetic field which creates column of particles. The magnetic and elastic properties are actually coupled making these MREs suitable for energy conversion. From these remarkable properties, an energy harvesting device is considered through the application of a DC bias magnetic induction on two MREs as a metal piece is applying an AC shear strain on them. Such strain therefore changes the permeabilities of the elastomers, hence generating an AC magnetic induction which can be converted into AC electrical signal with the help of a coil. The device is simulated with a Finite Element Method software to examine the effect of the MRE parameters, the DC bias magnetic induction and applied shear strain (amplitude and frequency) on the resulting electrical signal.


2021 ◽  
Vol 6 (7) ◽  
Author(s):  
Bernardo Luiz R. Ribeiro ◽  
Yunxing Su ◽  
Quentin Guillaumin ◽  
Kenneth S. Breuer ◽  
Jennifer A. Franck

2016 ◽  
Author(s):  
Douglas Da Costa Ferreira ◽  
Fábio Roberto Chavarette ◽  
Jean-Marc Stephane Lafay ◽  
Paulo Rogerio Novak ◽  
Samuel Pagotto ◽  
...  

2010 ◽  
Author(s):  
S. P. Philipps ◽  
G. Peharz ◽  
R. Hoheisel ◽  
T. Hornung ◽  
N. M. Al-Abbadi ◽  
...  

2018 ◽  
Vol 15 (1) ◽  
pp. 172988141875587 ◽  
Author(s):  
Tao Wang ◽  
Wei Song ◽  
Shiqiang Zhu

Energy consumption has significant influence on the working time of soft robots in mobile applications. Fluidic soft actuators usually release pressurized fluid to environment in retraction motion, resulting in dissipation of considerable energy, especially when the actuators are operated frequently. This article mainly explores the potential and approaches of harvesting the energy released from the actuators. First, the strain energy and pressurized energy stored in fluidic soft actuators are modeled based on elastic mechanics. Then, taking soft fiber-reinforced bending actuators as case study, the stored energy is calculated and its parametric characteristics are presented. Finally, two energy harvesting schematics as well as dynamic models are proposed and evaluated using numerical analysis. The results show that the control performance of the energy harvesting system becomes worse because of increased damping effect and its energy harvesting efficiency is only 14.2% due to the losses of energy conversion. The energy harvesting system in pneumatic form is a little more complex. However, its control performance is close to the original system and its energy harvesting efficiency reaches about 44.1%.


2022 ◽  
Vol 891 ◽  
pp. 162040
Author(s):  
Ikhtiar Ahmad ◽  
Rashida Jafer ◽  
Syed Mustansar Abbas ◽  
Nisar Ahmad ◽  
Ata-ur-Rehman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document