scholarly journals New Insights on Plasmin Long Term Stability and the Mechanism of Its Activity Inhibition Analyzed by Quartz Crystal Microbalance

Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 55
Author(s):  
Marek Tatarko ◽  
Ilia N. Ivanov ◽  
Tibor Hianik

We used the research quartz crystal microbalance (RQCM) to monitor regulatory effects of plasmin and trypsin in the presence of their inhibitor α2-antiplasmin. The gold surface of quartz crystals was modified with a β-casein layer that served as a substrate for protease digestion. The addition of plasmin or trypsin as well as their mixtures with α2-antiplasmin resulted in an increase of resonant frequency, f, and in a decrease of motional resistance, Rm, depending on the molar ratio of protease: antiplasmin. At equimolar concentrations of protease and α2-antiplasmin (5 nM:5 nM) full inhibition of protease activity took place. Monitoring of plasmin activity on an hourly and daily basis revealed a prominent effect of autolysis and decrease of plasmin activity in freshly activated samples. The degree of inhibition as well as plasmin half-life (t1/2 = 2.48 ± 0.28 days) connected with its degradation was determined.

Chemosensors ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 159
Author(s):  
Satit Rodphukdeekul ◽  
Miyuki Tabata ◽  
Chindanai Ratanaporncharoen ◽  
Yasuo Takeuchi ◽  
Pakpum Somboon ◽  
...  

Periodontal disease is an inflammatory disorder that is triggered by bacterial plaque and causes the destruction of the tooth-supporting tissues leading to tooth loss. Several bacteria species, including Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, are considered to be associated with severe periodontal conditions. In this study, we demonstrated a quartz crystal microbalance (QCM) immunoassay for quantitative assessment of the periodontal bacteria, A. actinomycetemcomitans. An immunosensor was constructed using a self-assembled monolayer of 11-mercaptoundecanoic acid (11-MUA) on the gold surface of a QCM chip. The 11-MUA layer was evaluated using a cyclic voltammetry technique to determine its mass and packing density. Next, a monoclonal antibody was covalently linked to 11-MUA using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide to act as the biorecognition element. The specificity of the monoclonal antibody was confirmed by an enzyme-linked immunosorbent assay. A calibration curve, for the relationship between the frequency shifts and number of bacteria, was used to calculate the number of A. actinomycetemcomitans bacteria in a test sample. Based on a regression equation, the lower detection limit was 800 cells, with a dynamic range up to 2.32 × 106 cells. Thus, the QCM biosensor in this study provides a sensitive and label-free method for quantitative analysis of periodontal bacteria. The method can be used in various biosensing assays for practical application and routine detection of periodontitis pathogens.


2006 ◽  
Vol 52 (12) ◽  
pp. 2273-2280 ◽  
Author(s):  
Yang Luo ◽  
Ming Chen ◽  
Qianjun Wen ◽  
Meng Zhao ◽  
Bo Zhang ◽  
...  

Abstract Background: Urinary proteins are predictive and prognostic markers for diabetes nephropathy. Conventional methods for the quantification of urinary proteins, however, are time-consuming, and most require radioactive labeling. We designed a label-free piezoelectric quartz crystal microbalance (QCM) immunosensor array to simultaneously quantify 4 urinary proteins. Methods: We constructed a 2 × 5 model piezoelectric immunosensor array fabricated with disposable quartz crystals for quantification of microalbumin, α1-microglobulin, β2-microglobulin, and IgG in urine. We made calibration curves after immobilization of antibodies at an optimal concentration and then evaluated the performance characteristics of the immunosensor with a series of tests. In addition, we measured 124 urine samples with both QCM immunosensor array and immunonephelometry to assess the correlation between the 2 methods. Results: With the QCM immunosensor array, we were able to quantify 4 urinary proteins within 15 min. This method had an analytical interval of 0.01–60 mg/L. The intraassay and interassay imprecisions (CVs) were <10%, and the relative recovery rates were 90.3%–109.1%. Nonspecificity of the immunosensor was insignificant (frequency shifts <20 Hz). ROC analyses indicated sensitivities were ≥95.8% and, specificities were ≥76.3%. Bland–Altman difference plots showed the immunosensor array to be highly comparable to immunonephelometry. Conclusions: The QCM system we designed has the advantages of being rapid, label free, and highly sensitive and thus can be a useful supplement to commercial assay methods in clinical chemistry.


Biomaterials ◽  
2006 ◽  
Vol 27 (33) ◽  
pp. 5748-5754 ◽  
Author(s):  
Akira Monkawa ◽  
Toshiyuki Ikoma ◽  
Shunji Yunoki ◽  
Tomohiko Yoshioka ◽  
Junzo Tanaka ◽  
...  

Author(s):  
Xiangyun Xiao ◽  
Chao Chen ◽  
Yehao Zhang ◽  
Huihui Kong ◽  
Rong An ◽  
...  

2021 ◽  
Vol 57 (12) ◽  
pp. 1157-1163
Author(s):  
D. O. Krinitsyn ◽  
A. S. Romanchenko ◽  
S. A. Vorob’ev ◽  
M. N. Likhatskii ◽  
A. A. Karacharov ◽  
...  

2007 ◽  
pp. 3574 ◽  
Author(s):  
Yuichi Manaka ◽  
Yukihiko Kudo ◽  
Hiroshi Yoshimine ◽  
Takayoshi Kawasaki ◽  
Kotaro Kajikawa ◽  
...  

2008 ◽  
Vol 396-398 ◽  
pp. 89-92 ◽  
Author(s):  
Toshiyuki Ikoma ◽  
Motohiro Tagaya ◽  
Toru Tonegawa ◽  
Mitsuhiro Okuda ◽  
Nobutaka Hanagata ◽  
...  

Hydroxyapatite (HAp) sensor, available for quartz crystal microbalance with dissipation (QCM-D) technique, has been fabricated by an electrophoretic deposition method. The method of re-usability of the sensor after adsorption of fibrinogen and the biological apatite (BAp) growth on the sensor with and without the adsorption of feral bovine serum (FBS) from 1.5 simulated body fluid were investigated. The re-usability of the sensor, cleaning with the combination of ammonia and hydrogen peroxide mixture and UV/ozone treatment, achieved ten times reuses. BAp was grown on the HAp surface but not on the gold surface at 37.5 oC for 40 hours. The viscoelastic property (DD/Df value) of the BAp layer on the HAp sensor showed harder than that of the protein adsorption films from FBS. The amount of the BAp grown on the HAp sensor adsorbed FBS is lower than that on the HAp sensor. The adsorption of FBS proteins on the HAp surface strongly inhibited the BAp growth.


Sign in / Sign up

Export Citation Format

Share Document