biological apatite
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 13)

H-INDEX

17
(FIVE YEARS 1)

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5300
Author(s):  
Jooseong Kim ◽  
Sukyoung Kim ◽  
Inhwan Song

Octacalcium phosphate (OCP) is a precursor of biological apatite crystals that has attracted attention as a possible bone substitute. On the other hand, few studies have examined this material at the experimental level due to the limitations on OCP mass production. Recently, mass production technology of OCP was developed, and the launch of OCP bone substitutes is occurring. In this study, the bone regeneration capacity of OCP products was compared with two of the most clinically used materials: heat-treated bovine bone (BHA) and sintered biphasic calcium phosphate (BCP). Twelve rabbits were used, and defects in each tibia were filled with OCP, BHA, BCP, and left unfilled as control (CON). The tibias were harvested at 4 and 12 weeks, and 15 μm slides were prepared using the diamond grinding method after being embedded in resin. Histological and histomorphometric analyses were performed to evaluate the bone regeneration ability and mechanism. The OCP showed significantly higher resorption and new bone formation in both periods analysed (p < 0.05). Overall, OCP bone substitutes can enhance bone regeneration significantly by activating osteoblasts and a rapid phase transition of OCP crystals to biological apatite crystals (mineralization), as well as providing additional space for new bone formation by rapid resorption.


Author(s):  
Jooseong Kim ◽  
Sukyoung Kim ◽  
In-Hwan Song

Octacalcium phosphate (OCP) is a precursor of biological apatite crystals that has attracted attention as a possible bone substitute. On the other hand, few studies have examined this material at the experimental level due to the limitations of OCP mass production. Recently, mass production technology of OCP was developed, and the launch of OCP bone substitutes is occurring. In this study, the bone regeneration capacity of OCP products was compared with two of the most clinically used materials: heat-treated bovine bone (BHA) and sintered biphasic calcium phosphate (BCP). Twelve rabbits were used, and defects in each tibia were filled with OCP, BHA, BCP, and left unfilled as control (CON). The tibias were harvested at 4 and 12 weeks, and 15 &mu;m slides were prepared using the diamond grinding method after being embedded in resin. Histological and histomorphometric analyses were performed to evaluate the bone regeneration ability and mechanism. The OCP showed significantly higher resorption and new bone formation in both periods analysed (p&lt;0.05). Overall, OCP bone substitutes can enhance bone regeneration significantly by activating osteoblasts and a rapid phase transition of OCP crystals to biological apatite crystals (mineralisation), as well as providing additional space for new bone formation by rapid resorption.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 728
Author(s):  
Gianfranco Ulian ◽  
Daniele Moro ◽  
Giovanni Valdrè

Hard tissues (e.g., bone, enamel, dentin) in vertebrates perform various and different functions, from sustaining the body to haematopoiesis. Such complex and hierarchal tissue is actually a material composite whose static and dynamic properties are controlled by the subtle physical and chemical interplay between its components, collagen (main organic part) and hydroxylapatite-like mineral. The knowledge needed to fully understand the properties of bony and dental tissues and to develop specific applicative biomaterials (e.g., fillers, prosthetics, scaffolds, implants, etc.) resides mostly at the atomic scale. Among the different methods to obtains such detailed information, atomistic computer simulations (in silico) have proven to be both corroborative and predictive tools in this subject. The authors have intensively worked on quantum mechanical simulations of bioapatite and the present work reports a detailed review addressed to the crystal-chemical, physical, spectroscopic, mechanical, and surface properties of the mineral phase of bone and dental tissues. The reviewed studies were conducted at different length and time scales, trying to understand the features of hydroxylapatite and biological apatite models alone and/or in interaction with simplified collagen-like models. The reported review shows the capability of the computational approach in dealing with complex biological physicochemical systems, providing accurate results that increase the overall knowledge of hard tissue science.


2021 ◽  
Vol 19 ◽  
pp. 228080002198970
Author(s):  
Blanca Elizabeth Monárrez-Cordero ◽  
Claudia Alejandra Rodríguez-González ◽  
Laura Elizabeth Valencia-Gómez ◽  
Juan Francisco Hernández-Paz ◽  
Santos Adriana Martel-Estrada ◽  
...  

Allium cepa extracts (AC) allow the fabrication of a biomaterial that, together with chitosan and PLGA, could be osteoconductive and promote a better and faster regeneration of bone tissue, with biocompatibility and biomineralization properties. In this work, scaffolds were developed by the thermally induced phase separation (TIPS) technique. An in vitro bioactivity analysis was performed using simulated body fluid (SBF). Scanning electron microscopy (SEM), energy dispersion spectroscopy, and infrared spectroscopy were used for the scaffolds characterization. The results showed a structure with a pore size distribution between 50 and 100 μm, which allowed the uniform formation of biological apatite crystals on the surface of the scaffolds. The chitosan/policaprolactone/ Allium cepa scaffold (ChPAC) showed the most promising results with a ratio of P/Ca between 1.6 and 1.7, a value very close to that of hydroxyapatite.


2020 ◽  
Author(s):  
Abdulelah S. Alrebaish ◽  
Otto C. Wilson
Keyword(s):  

2020 ◽  
Vol 21 (20) ◽  
pp. 7513
Author(s):  
Toshihisa Komori

Osteocalcin (Ocn), which is specifically produced by osteoblasts, and is the most abundant non-collagenous protein in bone, was demonstrated to inhibit bone formation and function as a hormone, which regulates glucose metabolism in the pancreas, testosterone synthesis in the testis, and muscle mass, based on the phenotype of Ocn−/− mice by Karsenty’s group. Recently, Ocn−/− mice were newly generated by two groups independently. Bone strength is determined by bone quantity and quality. The new Ocn−/− mice revealed that Ocn is not involved in the regulation of bone formation and bone quantity, but that Ocn regulates bone quality by aligning biological apatite (BAp) parallel to the collagen fibrils. Moreover, glucose metabolism, testosterone synthesis and spermatogenesis, and muscle mass were normal in the new Ocn−/− mice. Thus, the function of Ocn is the adjustment of growth orientation of BAp parallel to the collagen fibrils, which is important for bone strength to the loading direction of the long bone. However, Ocn does not play a role as a hormone in the pancreas, testis, and muscle. Clinically, serum Ocn is a marker for bone formation, and exercise increases bone formation and improves glucose metabolism, making a connection between Ocn and glucose metabolism.


2020 ◽  
Vol 39 (4) ◽  
pp. 670-677
Author(s):  
Kosuke NAKAJIMA ◽  
Satoru MATSUNAGA ◽  
Toshiyuki MORIOKA ◽  
Takayoshi NAKANO ◽  
Shinichi ABE ◽  
...  

2020 ◽  
Vol 11 (2) ◽  
pp. 45
Author(s):  
Pio Moerbeck-Filho ◽  
Suelen C. Sartoretto ◽  
Marcelo J. Uzeda ◽  
Maurício Barreto ◽  
Alena Medrado ◽  
...  

Among the biomaterials based on calcium phosphate, hydroxyapatite has been widely used due to its biocompatibility and osteoconduction. The substitution of the phosphate group by the carbonate group associated with the absence of heat treatment and low synthesis temperature leads to the formation of carbonated hydroxyapatite (CHA). The association of CHA with other metals (strontium, zinc, magnesium, iron, and manganese) produces amorphous calcium phosphate-containing metals (ACPMetals), which can optimize their properties and mimic biological apatite. This study aimed to evaluate the biocompatibility and biodegradation of ACPMetals in mice subcutaneous tissue. The materials were physicochemically characterized with Fourier Transform InfraRed (FTIR), X-Ray Diffraction (XRD), and Atomic Absorption Spectrometry (AAS). Balb-C mice (n = 45) were randomly divided into three groups: carbonated hydroxyapatite, CHA (n = 15), ACPMetals (n = 15), and without implantation of material (SHAM, n = 15). The groups were subdivided into three experimental periods (1, 3, and 9 weeks). The samples were processed histologically for descriptive and semiquantitative evaluation of the biological effect of biomaterials according to ISO 10993-6:2016. The ACPMetals group was partially biodegradable; however, it presented a severe irritating reaction after 1 and 3 weeks and moderately irritating after nine weeks. Future studies with other concentrations and other metals should be carried out to mimic biological apatite.


Author(s):  
Ahmed Talal ◽  
Shorouq Khalid Hamid ◽  
Maria Khan ◽  
Abdul Samad Khan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document