scholarly journals Morphology, Ultrastructure, and Mitochondrial Genome of the Marine Non-Photosynthetic Bicosoecid Cafileria marina Gen. et sp. nov.

2019 ◽  
Vol 7 (8) ◽  
pp. 240
Author(s):  
Dagmar Jirsová ◽  
Zoltán Füssy ◽  
Jitka Richtová ◽  
Ansgar Gruber ◽  
Miroslav Oborník

In this paper, we describe a novel bacteriophagous biflagellate, Cafileria marina with two smooth flagellae, isolated from material collected from a rock surface in the Kvernesfjorden (Norway). This flagellate was characterized by scanning and transmission electron microscopy, fluorescence, and light microscopy. The sequence of the small subunit ribosomal RNA gene (18S) was used as a molecular marker for determining the phylogenetic position of this organism. Apart from the nuclear ribosomal gene, the whole mitochondrial genome was sequenced, assembled, and annotated. Morphological observations show that the newly described flagellate shares key ultrastructural characters with representatives of the family Bicosoecida (Heterokonta). Intriguingly, mitochondria of C. marina frequently associate with its nucleus through an electron-dense disc at the boundary of the two compartments. The function of this association remains unclear. Phylogenetic analyses corroborate the morphological data and place C. marina with other sequence data of representatives from the family Bicosoecida. We describe C. marina as a new species from a new genus in this family.

2021 ◽  
Vol 151 ◽  
Author(s):  
Dieter Weber ◽  
Fabio Stoch ◽  
Lee R.F.D. Knight ◽  
Claire Chauveau ◽  
Jean-François Flot

Microniphargus leruthi Schellenberg, 1934 (Amphipoda: Niphargidae) was first described based on samples collected in Belgium and placed in a monotypic genus within the family Niphargidae. However, some details of its morphology as well as recent phylogenetic studies suggest that Microniphargus may be more closely related to Pseudoniphargus (Amphipoda: Pseudoniphargidae) than to Niphargus. Moreover, M. leruthi ranges over 1,469 km from Ireland to Germany, which is striking since only a few niphargids have confirmed ranges in excess of 200 km. To find out the phylogenetic position of M. leruthi and check whether it may be a complex of cryptic species, we collected material from Ireland, England and Belgium then sequenced fragments of the mitochondrial cytochrome c oxidase subunit 1 gene as well as of the nuclear 28S ribosomal gene. Phylogenetic analyses of both markers confirm that Microniphargus is closer to Pseudoniphargus than to Niphargus, leading us to reallocate Microniphargus to Pseudoniphargidae. We also identify three congruent mito-nuclear lineages present respectively in Ireland, in both Belgium and England, and in England only (with the latter found in sympatry at one location), suggesting that M. leruthi is a complex of at least three species with a putative centre of origin in England.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qi Gao ◽  
Chen Shao ◽  
Qiuyue Tang ◽  
Jingbao Li

The morphology and morphogenesis of Pseudosincirra longicirrata nov. gen. and nov. comb., isolated from southern China, were investigated with living observation and protargol staining. Our population is similar to the original population in living characteristics and ciliary patterns. The main determinable morphogenetic features of P. longicirrata nov. comb. are the presence of five frontoventral-transverse cirral anlagen (FVT-anlagen) and a dorsomarginal kinety anlage. According to the origin of FVT-anlagen IV and V in proter, it can be determined that P. longicirrata nov. comb. possesses two frontoventral rows and one right marginal row. Hence, a new genus, Pseudosincirra nov. gen., is proposed, and the diagnosis of P. longicirrata nov. comb. is improved. The new genus is diagnosed as follows: adoral zone of membranelles and undulating membranes is in a Gonostomum pattern; there are three enlarged frontal cirri, one buccal cirrus, and one parabuccal cirrus; postperistomial cirrus and transverse cirri are lacking; there are two more or less long frontoventral rows and one right and two or more left marginal rows; cirri within all rows very widely spaced; dorsal kinety pattern is of Urosomoida type, that is, three dorsal kineties and one dorsomarginal kinety; and caudal cirri are present. Phylogenetic analyses based on the small subunit ribosomal (SSU rDNA) sequence data indicate that P. longicirrata nov. comb. clusters with Deviata and Perisincirra. It is considered that Pseudosincirra nov. gen. and Perisincirra paucicirrata should be assigned to the family Deviatidae; fine cirri, and cirri within all rows being relatively widely spaced, should be considered as plesiomorphies of Deviatidae; and Deviatidae is closely related to Dorsomarginalia or Strongylidium–Hemiamphisiella–Pseudouroleptus.


Parasitology ◽  
2010 ◽  
Vol 138 (3) ◽  
pp. 381-393 ◽  
Author(s):  
PAVLA BARTOŠOVÁ ◽  
MARK A. FREEMAN ◽  
HIROSHI YOKOYAMA ◽  
MONICA CAFFARA ◽  
IVAN FIALA

SUMMARYAn amendment of the family Sinuolineidae (Myxosporea) is proposed in order to include a newly described genus Latyspora n. gen. The type species Latyspora scomberomori n. gen. n. sp. is a coelozoic parasite in the kidney tubules of Scomberomorus guttatus. In addition to the morphological and molecular characterization of L. scomberomori n. gen. n. sp., we also present novel SSU rDNA data on Sphaerospora testicularis, a serious parasite of Dicentrarchus labrax. Performed phylogenetic analyses revealed that both species cluster within the marine urinary clade encompassing the representatives with a shared insertion within their V4 SSU rRNA region and grouping according to the shape of their spores’ sutural line and their similar tissue tropism in the host. Sphaerospora testicularis is the closest relative to Parvicapsula minibicornis within the Parvicapsula subclade and L. scomberomori n. gen. n. sp. is the basal species of the Zschokkella subclade. The phylogenetic position of S. testicularis, outwith the basal Sphaerospora sensu stricto clade, and its morphology suggest it being a non-typical Sphaerospora. The sequence data provided on S. testicularis can help in future revisions of the strongly polyphyletic genus Sphaerospora. We recommend re-sequencing of several sphaerosporids as an essential step before such taxonomic changes are accomplished.


1998 ◽  
Vol 30 (4-5) ◽  
pp. 463-472 ◽  
Author(s):  
Jan-Eric Mattsson ◽  
Mats Wedin

AbstractIn order to identify monophyletic groups within the family Parmeliaceae, eleven taxa (Bryoria capillaris, Cetraria islandica, Evernia pruniastri, Hypogymnia physodes, Parmelia saxatilis, Platismatia glauca, Pleurosticta acetabulum, Usneaflorida, Vulpicida juniperina, V. pinastri, and Xanthoparmelia conspersa) were studied using newly produced nuclear rDNA sequence data from the ITS and 5·8S regions. The resulting evolutionary hypothesis was compared with results from previous phylogenetic analyses based on anatomy, morphology, and chemistry. The outcome of this comparison does not support the earlier proposed phylogenies but is not stable enough for identifying monophyletic groups, with one exception. The results indicate a close relationship between Cetraria and Vulpicida, which is contradictory to previous published analyses. The variation in ascus structures in the Parmeliaceae is discussed and it is questioned whether the earlier distinguished ‘ forms ’ of ascus types represent synapomorphies, if they are based on poorly supported analyses, or if they are exaggerations of relatively slight variation in shape. Further interpretations of the results are discussed and areas of future studies based on DNA-data are suggested.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chen Shao ◽  
Qi Gao ◽  
Alan Warren ◽  
Jingyi Wang

The morphology and the regulation of cortical pattern associated with the cell size, division, and phylogenetic position of a new hypotrichous ciliate, Quadristicha subtropica n. sp. collected from a freshwater pond in southern China, were investigated. Quadristicha subtropica n. sp. is characterized as follows: size in vivo 60–115 μm × 25–45 μm; 19–21 adoral membranelles; buccal cirrus near anterior end of endoral and paroral; cirrus IV/3 at about level of buccal vertex; right marginal row begins ahead of buccal vertex; 11–16 right and 12–19 left marginal cirri; and dorsal cilia about 5 μm long. The basic morphogenetic process in Q. subtropica n. sp. is consistent with that of the type species, Quadristicha setigera. Phylogenetic analyses based on small subunit ribosomal DNA sequence data reveal that the systematic position of Q. subtropica n. sp. is rather unstable with low support values across the tree and the genus Quadristicha is not monophyletic.


Diversity ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 143 ◽  
Author(s):  
Albert Chen ◽  
Noor D. White ◽  
Roger B.J. Benson ◽  
Michael J. Braun ◽  
Daniel J. Field

Strisores is a clade of neoavian birds that include diurnal aerial specialists such as swifts and hummingbirds, as well as several predominantly nocturnal lineages such as nightjars and potoos. Despite the use of genome-scale molecular datasets, the phylogenetic interrelationships among major strisorean groups remain controversial. Given the availability of next-generation sequence data for Strisores and the clade’s rich fossil record, we reassessed the phylogeny of Strisores by incorporating a large-scale sequence dataset with anatomical data from living and fossil strisoreans within a Bayesian total-evidence framework. Combined analyses of molecular and morphological data resulted in a phylogenetic topology for Strisores that is congruent with the findings of two recent molecular phylogenomic studies, supporting nightjars (Caprimulgidae) as the extant sister group of the remainder of Strisores. This total-evidence framework allowed us to identify morphological synapomorphies for strisorean clades previously recovered using molecular-only datasets. However, a combined analysis of molecular and morphological data highlighted strong signal conflict between sequence and anatomical data in Strisores. Furthermore, simultaneous analysis of molecular and morphological data recovered differing placements for some fossil taxa compared with analyses of morphological data under a molecular scaffold, highlighting the importance of analytical decisions when conducting morphological phylogenetic analyses of taxa with molecular phylogenetic data. We suggest that multiple strisorean lineages have experienced convergent evolution across the skeleton, obfuscating the phylogenetic position of certain fossils, and that many distinctive specializations of strisorean subclades were acquired early in their evolutionary history. Despite this apparent complexity in the evolutionary history of Strisores, our results provide fossil support for aerial foraging as the ancestral ecological strategy of Strisores, as implied by recent phylogenetic topologies derived from molecular data.


Phytotaxa ◽  
2020 ◽  
Vol 441 (1) ◽  
pp. 47-59
Author(s):  
JIN-FEN HAN ◽  
FANG-RU NAN ◽  
JIA FENG ◽  
JUN-PING LV ◽  
QI LIU ◽  
...  

Four putative “Chantransia” isolates were collected from four locations in Hubei and Yunnan Provinces, China. Morphological analyses were conducted on all isolates. Two specimens (HB26 and YN2) fit the morphological description of A. pygmaea, while the other two isolates (YN1 and YN3) varied in morphology, but were within the circumscription of Audouinella hermannii. Due to the fact that the morphological characters of the “Chantransia” stages of order Batrachospermales and the species of genus Audouinella are too similar to be distinguished, a molecular analysis was performed to clarify the phylogenetic position of these four isolates based on rbcL and psbA sequences. Two “pygmaea” specimens collected from Jiugong Mountain, Hubei Province (HB26) and Shimen Gorge, Yunnan Province (YN2), such as S. jiugongshanensis and S. shimenxiaensis, are proposed primarily based on the DNA sequence data generated in this study. The description of these two new species provides more molecular data for phylogenetic analysis of the genus Sheathia. In addition to these newly described species, the results strongly support that those “hermannii” isolates (YN1 and YN3) collected from Yunnan Province were the “Chantransia” of S. arcuata. However, their gametophyte stages have not been found, meaning that critical diagnostic morphological features were unavailable and molecular methods were the only means for ascertaining their phylogenetic position. Considering the extensive application of the rbcL and psbA genes in phylogenetic analyses of freshwater red algae, we recommend using these two genes to identify species when no morphological characteristics are available.


Nematology ◽  
2003 ◽  
Vol 5 (3) ◽  
pp. 405-420 ◽  
Author(s):  
Rita Van Driessche ◽  
Irma Tandingan De Ley ◽  
Paul De Ley ◽  
Hendrik Segers ◽  
Wim Bert

AbstractMeasurements, line drawings and scanning electromicrographs are provided of Baujardia mirabilis gen. n., sp. n., isolated from pitcher fluid of Nepenthes mirabilis from Thailand. The new genus differs from all known nematodes in having two opposing and offset spermatheca-like pouches at the junction of oviduct and uterus. It also differs from most known Rhabditida in having four cephalic setae instead of papillae. Phylogenetic analysis of small subunit rDNA sequence data robustly places the new genus within Panagrolaimidae as a sister taxon to Panagrellus. These unusual nematodes resemble Panagrellus in body size (1.8-2.7 mm in females, 1.3-1.9 mm in males) and in the monodelphic, prodelphic female reproductive system with thickened vaginal walls and prominent postvulval sac. However, they differ from Panagrellus in the characters mentioned above, in their comparatively longer stegostom and in the shape of the male spicules. Because of its aberrant characters, inclusion of this new genus in Panagrolaimidae requires changes to the family diagnosis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jiyang Ma ◽  
Yan Zhao ◽  
Tengyue Zhang ◽  
Chen Shao ◽  
Khaled A. S. Al-Rasheid ◽  
...  

Abstract Background Ciliated protists, a huge assemblage of unicellular eukaryotes, are extremely diverse and play important ecological roles in most habitats where there is sufficient moisture for their survivals. Even though there is a growing recognition that these organisms are associated with many ecological or environmental processes, their biodiversity is poorly understood and many biotopes (e.g. soils in desert areas of Asia) remain largely unknown. Here we document an undescribed form found in sludge soil in a halt-desert inland of China. Investigations of its morphology, morphogenesis and molecular phylogeny indicate that it represents a new genus and new species, Parasincirra sinica n. g., n. sp. Results The new, monotypic genus Parasincirra n. g. is defined by having three frontal cirri, an amphisiellid median cirral row about the same length as the adoral zone, one short frontoventral cirral row, cirrus III/2 and transverse cirri present, buccal and caudal cirri absent, one right and one left marginal row and three dorsal kineties. The main morphogenetic features of the new taxon are: (1) frontoventral-transverse cirral anlagen II to VI are formed in a primary mode; (2) the amphisiellid median cirral row is formed by anlagen V and VI, while the frontoventral row is generated from anlage IV; (3) cirral streaks IV to VI generate one transverse cirrus each; (4) frontoventral-transverse cirral anlage II generates one or two cirri, although the posterior one (when formed) will be absorbed in late stages, that is, no buccal cirrus is formed; (5) the posterior part of the parental adoral zone of membranelles is renewed; (6) dorsal morphogenesis follows a typical Gonostomum-pattern; and (7) the macronuclear nodules fuse to form a single mass. The investigation of its molecular phylogeny inferred from Bayesian inference and Maximum likelihood analyses based on small subunit ribosomal DNA (SSU rDNA) sequence data, failed to reveal its exact systematic position, although species of related genera are generally assigned to the family Amphisiellidae Jankowski, 1979. Morphological and morphogenetic differences between the new taxon and Uroleptoides Wenzel, 1953, Parabistichella Jiang et al., 2013, and other amphisiellids clearly support the validity of Parasincirra as a new genus. The monophyly of the family Amphisiellidae is rejected by the AU test in this study. Conclusions The critical character of the family Amphisiellidae, i.e., the amphisiellid median cirral row, might result from convergent evolution in different taxa. Amphisiellidae are not monophyletic.


2007 ◽  
Vol 104 (18) ◽  
pp. 7495-7499 ◽  
Author(s):  
Dorothée Huchon ◽  
Pascale Chevret ◽  
Ursula Jordan ◽  
C. William Kilpatrick ◽  
Vincent Ranwez ◽  
...  

Laonastes aenigmamus is an enigmatic rodent first described in 2005. Molecular and morphological data suggested that it is the sole representative of a new mammalian family, the Laonastidae, and a member of the Hystricognathi. However, the validity of this family is controversial because fossil-based phylogenetic analyses suggest that Laonastes is a surviving member of the Diatomyidae, a family considered to have been extinct for 11 million years. According to these data, Laonastes and Diatomyidae are the sister clade of extant Ctenodactylidae (i.e., gundies) and do not belong to the Hystricognathi. To solve the phylogenetic position of Laonastes, we conducted a large-scale molecular phylogeny of rodents. The analysis includes representatives of all major rodent taxonomic groups and was based on 5.5 kb of sequence data from four nuclear and two mitochondrial genes. To further validate the obtained results, a short interspersed element insertion analysis including 11 informative loci was also performed. Our molecular data based on sequence and short interspersed element analyses unambiguously placed Laonastes as a sister clade of gundies. All alternative hypotheses were significantly rejected based on Shimodaira–Hasegawa tests, supporting the idea that Laonastes does not belong to the Hystricognathi. Molecular dating analysis also supports an ancient divergence, ≈44 Mya ago, between Ctenodactylidae and Laonastes. These combined analyses support the hypothesis that Laonastes is indeed a living fossil. Protection of this surviving species would conserve an ancient mammalian family.


Sign in / Sign up

Export Citation Format

Share Document