scholarly journals Cell-division pattern and phylogenetic analyses of a new ciliate genus Parasincirra n. g. (Protista, Ciliophora, Hypotrichia), with a report of a new soil species, P. sinica n. sp. from northwest China

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jiyang Ma ◽  
Yan Zhao ◽  
Tengyue Zhang ◽  
Chen Shao ◽  
Khaled A. S. Al-Rasheid ◽  
...  

Abstract Background Ciliated protists, a huge assemblage of unicellular eukaryotes, are extremely diverse and play important ecological roles in most habitats where there is sufficient moisture for their survivals. Even though there is a growing recognition that these organisms are associated with many ecological or environmental processes, their biodiversity is poorly understood and many biotopes (e.g. soils in desert areas of Asia) remain largely unknown. Here we document an undescribed form found in sludge soil in a halt-desert inland of China. Investigations of its morphology, morphogenesis and molecular phylogeny indicate that it represents a new genus and new species, Parasincirra sinica n. g., n. sp. Results The new, monotypic genus Parasincirra n. g. is defined by having three frontal cirri, an amphisiellid median cirral row about the same length as the adoral zone, one short frontoventral cirral row, cirrus III/2 and transverse cirri present, buccal and caudal cirri absent, one right and one left marginal row and three dorsal kineties. The main morphogenetic features of the new taxon are: (1) frontoventral-transverse cirral anlagen II to VI are formed in a primary mode; (2) the amphisiellid median cirral row is formed by anlagen V and VI, while the frontoventral row is generated from anlage IV; (3) cirral streaks IV to VI generate one transverse cirrus each; (4) frontoventral-transverse cirral anlage II generates one or two cirri, although the posterior one (when formed) will be absorbed in late stages, that is, no buccal cirrus is formed; (5) the posterior part of the parental adoral zone of membranelles is renewed; (6) dorsal morphogenesis follows a typical Gonostomum-pattern; and (7) the macronuclear nodules fuse to form a single mass. The investigation of its molecular phylogeny inferred from Bayesian inference and Maximum likelihood analyses based on small subunit ribosomal DNA (SSU rDNA) sequence data, failed to reveal its exact systematic position, although species of related genera are generally assigned to the family Amphisiellidae Jankowski, 1979. Morphological and morphogenetic differences between the new taxon and Uroleptoides Wenzel, 1953, Parabistichella Jiang et al., 2013, and other amphisiellids clearly support the validity of Parasincirra as a new genus. The monophyly of the family Amphisiellidae is rejected by the AU test in this study. Conclusions The critical character of the family Amphisiellidae, i.e., the amphisiellid median cirral row, might result from convergent evolution in different taxa. Amphisiellidae are not monophyletic.

2021 ◽  
Vol 12 ◽  
Author(s):  
Qi Gao ◽  
Chen Shao ◽  
Qiuyue Tang ◽  
Jingbao Li

The morphology and morphogenesis of Pseudosincirra longicirrata nov. gen. and nov. comb., isolated from southern China, were investigated with living observation and protargol staining. Our population is similar to the original population in living characteristics and ciliary patterns. The main determinable morphogenetic features of P. longicirrata nov. comb. are the presence of five frontoventral-transverse cirral anlagen (FVT-anlagen) and a dorsomarginal kinety anlage. According to the origin of FVT-anlagen IV and V in proter, it can be determined that P. longicirrata nov. comb. possesses two frontoventral rows and one right marginal row. Hence, a new genus, Pseudosincirra nov. gen., is proposed, and the diagnosis of P. longicirrata nov. comb. is improved. The new genus is diagnosed as follows: adoral zone of membranelles and undulating membranes is in a Gonostomum pattern; there are three enlarged frontal cirri, one buccal cirrus, and one parabuccal cirrus; postperistomial cirrus and transverse cirri are lacking; there are two more or less long frontoventral rows and one right and two or more left marginal rows; cirri within all rows very widely spaced; dorsal kinety pattern is of Urosomoida type, that is, three dorsal kineties and one dorsomarginal kinety; and caudal cirri are present. Phylogenetic analyses based on the small subunit ribosomal (SSU rDNA) sequence data indicate that P. longicirrata nov. comb. clusters with Deviata and Perisincirra. It is considered that Pseudosincirra nov. gen. and Perisincirra paucicirrata should be assigned to the family Deviatidae; fine cirri, and cirri within all rows being relatively widely spaced, should be considered as plesiomorphies of Deviatidae; and Deviatidae is closely related to Dorsomarginalia or Strongylidium–Hemiamphisiella–Pseudouroleptus.


Zootaxa ◽  
2017 ◽  
Vol 4254 (5) ◽  
pp. 537 ◽  
Author(s):  
CHIA-HSUAN WEI ◽  
SHEN-HORN YEN

The Epicopeiidae is a small geometroid family distributed in the East Palaearctic and Oriental regions. It exhibits high morphological diversity in body size and wing shape, while their wing patterns involve in various complex mimicry rings. In the present study, we attempted to describe a new genus, and a new species from Vietnam, with comments on two assumed congeneric novel species from China and India. To address its phylogenetic affinity, we reconstructed the phylogeny of the family by using sequence data of COI, EF-1α, and 28S gene regions obtained from seven genera of Epicopeiidae with Pseudobiston pinratanai as the outgroup. We also compared the morphology of the new taxon to other epicopeiid genera to affirm its taxonomic status. The results suggest that the undescribed taxon deserve a new genus, namely Mimaporia gen. n. The species from Vietnam, Mimaporia hmong sp. n., is described as new to science. Under different tree building strategies, the new genus is the sister group of either Chatamla Moore, 1881 or Parabraxas Leech, 1897. The morphological evidence, which was not included in phylogenetic analyses, however, suggests its potential affinity with Burmeia Minet, 2003. This study also provides the first, although preliminary, molecular phylogeny of the family on which the revised systematics and interpretation of character evolution can be based. 


2020 ◽  
Author(s):  
Chen Shao ◽  
Jiyang Ma ◽  
Yan Zhao ◽  
Tengyue Zhang ◽  
Khaled A.S. Al-Rasheid ◽  
...  

Abstract Background: Ciliated protists, a huge assemblage of unicellular eukaryotes, are extremely diverse and play important roles in ecosystem in almost all kinds of habitats. Even though there is a growing recognition that those organisms associate with many ecological or environmental processes, their biodiversity, due to many reasons, is poorly understood and many biotopes (e.g. the soil in desert area in Asia) remain largely unknown or unconsidered. Here we document an undescribed form found in sludge soil in a halt-desert inland in China and the taxonomic/ morphogenetic surveys indicate that it represents a new genus and new species, Parasincirra sinica n. g., n. sp. which is supported also by molecular data.Results: This new, monotypic genus Parasincirra n. g. is defined by having three frontal cirri, an amphisiellid median cirral row about as long as the adoral zone, one short frontoventral cirral row, cirrus III/2 and transverse cirri present, buccal and caudal cirri absent, one right and one left marginal row and three dorsal kineties. The main morphogenetic features of the new taxon are: (1) frontoventral-transverse cirral anlagen II to VI are formed in primary mode; (2) the amphisiellid median cirral row is formed by anlagen V and VI, while the frontoventral row is generated from anlage IV; (3) cirral streaks IV to VI generate one transverse cirrus each; (4) frontoventral-transverse cirral anlage II generates one or two cirri, while the posterior one will be absorbed in late stages, that is, no buccal cirrus is formed; (5) the posterior part of the parental adoral zone of membranelles is renewed; (6) dorsal morphogenesis follows a typical Gonostomum-pattern; and (7) the macronuclear nodules fuse to form a single mass. Based on the SSU rDNA information, analyses of the phylogenetic relationship inferred from Bayesian inference and maximum likelihood analyses were unable to outline the exact position of this new form among some other species of related genera which are generally assigned in the family Amphisiellidae Jankowski, 1979. The morphological/ morphogenetical differences between the new genus/species and Uroleptoides Wenzel, 1953/ Parabistichella Jiang et al., 2013, as well as other amphisiellids, clearly support the validity of the establishment of this new genus Parasincirra.


Phytotaxa ◽  
2019 ◽  
Vol 397 (2) ◽  
pp. 146 ◽  
Author(s):  
JING YANG ◽  
JIAN-KUI (JACK) LIU ◽  
KEVIN D. HYDE ◽  
E.B. GARETH JONES ◽  
ZONG-LONG LUO ◽  
...  

An interesting hyphomycetous taxon was collected on submerged wood in a freshwater stream in Trat Province, Thailand. It is morphologically similar to endophragmiella-like taxa, characterized by macronematous, mononematous conidiophores, monoblastic, enteroblastic conidiogenous cells and clavate to obovoid, septate brown conidia. The unique feature of this taxon is that the mature conidium often bears a young new conidial primordium which develops percurrently from a lower semi-transparent cell and they secede simultaneously. Phylogenetic analyses of a combined LSU, SSU and RPB2 sequence data support the placement of this fungus together with Platytrachelon and close to the family Papulosaceae within Diaporthomycetidae, Sordariomycetes. A new genus is introduced to accommodate the new taxon as Aquimonospora. The novel species Aquimonospora tratensis is described and illustrated and is compared with other morphologically similar taxa.


Phytotaxa ◽  
2015 ◽  
Vol 231 (3) ◽  
pp. 271 ◽  
Author(s):  
Kasun Madhusanka Thambugala ◽  
YU CHUNFANG ◽  
ERIO CAMPORESI ◽  
ALI H. BAHKALI ◽  
ZUO YI LIU ◽  
...  

Didymosphaeria spartii was collected from dead branches of Spartium junceum in Italy. Multi-gene phylogenetic analyses of ITS, 18S and 28S nrDNA sequence data were carried out using maximum likelihood and Bayesian analysis. The resulting phylogenetic trees showed this to be a new genus in a well-supported clade in Massarinaceae. A new genus Pseudodidymosphaeria is therefore introduced to accommodate this species based on molecular phylogeny and morphology. A illustrated account is provided for the new genus with its asexual morph and the new taxon is compared with Massarina and Didymosphaeria.


2021 ◽  
Author(s):  
Hui-Xia Chen ◽  
Xiao-Hong Gu ◽  
Xue-Feng Ni ◽  
Liang Li

Abstract Background Nematodes of the family Cosmocercidae (Ascaridida: Cosmocercoidea) are mainly parasitic in the digest tract of various amphibians and reptiles worldwide. However, our knowledge of the molecular phylogeny of the Cosmocercidae is still far from comprehensive. The phylogenetic relationships of the Cosmocercidae and the other two families Atractidae and Kathlaniidae in the superfamily Cosmocercoidea, are still under debate. Moreover, the systematic position of some genera in Cosmocercidae remains unclear. Methods Nematodes collected from Polypedates megacephalus (Hallowell) (Anura: Rhacophoridae) were identified using morphological methods (light and scanning electron microscopy) and molecular approaches [sequencing and analyzing the small ribosomal DNA (18S), internal transcribed spacer 1 (ITS-1), large ribosomal DNA (28S) and mitochondrial cytochrome c oxidase subunit 1 (cox1) target regions]. Phylogenetic analyses of cosmocercoid nematodes using 18S + 28S sequence data were performed to clarify the phylogenetic relationships of the Cosmocercidae, Atractidae and Kathlaniidae in the Cosmocercoidea, and the systematic position of the genus Aplectana in Cosmocercidae. Results Morphological and genetic evidence supported that the nematode specimens collected from P. megacephalus represents a new species of Aplectana (Cosmocercoidea: Cosmocercidae). Our phylogenetic results revealed that the Cosmocercidae is a monophyletic group, but not the basal group in Cosmocercoidea as the traditional classification. The Kathlaniidae is a paraphyletic group, and the subfamily Cruziinae (including only the genus Cruzia) formed a sister relationship to the Cosmocercidae. Phylogenetic analyses also showed that the genus Aplectana has closer relationship to the genus Cosmocerca in the Cosmocercidae. Conclusions Our molecular phylogenetic results supported that the subfamily Cruziinae should be moved out from the hitherto-defined family Kathlaniidae and elevated to a separate family, and the genus Cosmocerca has closer relationship to the genus Aplectana in the family Cosmocercidae, Our present study provided the basic molecular phylogenetic framework for the superfamily Cosmocercoidea based on 18S + 28S sequence data for the first time. Moreover, a new species of Aplectana, A. xishuangbannaensis n. sp., was described using an integrative approach.


2021 ◽  
Vol 51 (2) ◽  
pp. 81-91
Author(s):  
Tushar Kaushik ◽  
Anupam Ghosh ◽  
Thirumalai M ◽  
Ishita Das

ABSTRACT We describe Srinivasania sundarbanensis n. gen. et sp. nov., a multichambered textulariid foraminifer from the world's largest mangrove ecosystem, the Sundarbans, India. The new genus has an agglutinated wall structure, planispirally coiled test, and a single high-arched equatorial aperture located at the base of the final chamber with a narrow, agglutinated lip and with morphological similarity to the genera GobbettiaDhillon, 1968, and HaplophragmoidesCushman, 1910. Phylogenetic analyses, using partial small subunit rRNA gene, partial large subunit rRNA gene, and concatenated (LSU+SSU) sequence data clearly show the placement of this new taxon among other textulariid foraminifers, distant from all other genera in a strongly supported clade. In the new genus and species, the test is discoidal, measuring 100 to 350 µm in diameter with six to seven chambers in the final whorl. Elemental characterization (SEM-EDS) of the agglutinated test wall reveals a preference for quartz grains (SiO2) to construct its test. It is a common species and is presently known only from the northern marsh environments of Indian Sundarbans.


2010 ◽  
Vol 60 (2) ◽  
pp. 460-468 ◽  
Author(s):  
Miao Miao ◽  
Yangang Wang ◽  
Weibo Song ◽  
John C. Clamp ◽  
Khaled A. S. Al-Rasheid

Recently, an undescribed marine ciliate was isolated from China. Investigation of its morphology and infraciliature revealed it as an undescribed species representing a new genus, Eurystomatella n. gen., the type of the new family Eurystomatellidae n. fam. The new family is defined by close-set, apically positioned oral membranelles and a dominant buccal field that is surrounded by an almost completely circular paroral membrane. The new genus is defined by having a small oral membranelle 1 (M1), bipartite M2 and well-developed M3, a body surface faintly sculptured with a silverline system in a quadrangular, reticulate pattern and a cytostome located at the anterior third of a large buccal field. The type species of the new genus, Eurystomatella sinica n. sp., is a morphologically unique form that is defined mainly by the combination of a conspicuously flattened body, several caudal cilia, extremely long cilia associated with the buccal apparatus and a contractile vacuole located subcaudally. According to phylogenetic analyses of small-subunit (SSU) rRNA gene sequences, Eurystomatella clusters with the genus Cyclidium, as a sister group to the family Pleuronematidae. The great divergence in both buccal and somatic ciliature between Eurystomatella and all other known scuticociliates supports the establishment of a new family for Eurystomatella.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chen Shao ◽  
Qi Gao ◽  
Alan Warren ◽  
Jingyi Wang

The morphology and the regulation of cortical pattern associated with the cell size, division, and phylogenetic position of a new hypotrichous ciliate, Quadristicha subtropica n. sp. collected from a freshwater pond in southern China, were investigated. Quadristicha subtropica n. sp. is characterized as follows: size in vivo 60–115 μm × 25–45 μm; 19–21 adoral membranelles; buccal cirrus near anterior end of endoral and paroral; cirrus IV/3 at about level of buccal vertex; right marginal row begins ahead of buccal vertex; 11–16 right and 12–19 left marginal cirri; and dorsal cilia about 5 μm long. The basic morphogenetic process in Q. subtropica n. sp. is consistent with that of the type species, Quadristicha setigera. Phylogenetic analyses based on small subunit ribosomal DNA sequence data reveal that the systematic position of Q. subtropica n. sp. is rather unstable with low support values across the tree and the genus Quadristicha is not monophyletic.


MycoKeys ◽  
2020 ◽  
Vol 69 ◽  
pp. 113-129
Author(s):  
Xiu-Lan Xu ◽  
Chun-Lin Yang ◽  
Rajesh Jeewon ◽  
Dhanushka N. Wanasinghe ◽  
Ying-Gao Liu ◽  
...  

In this paper, Claviformisporagen. nov. in Linocarpaceae is introduced from Phyllostachys heteroclada in Sichuan Province, China. The new genus is characterised by its distinct morphological characters, such as ostiole with periphyses, asci with a thick doughnut-shaped, J- apical ring and clavate ascospore without septum-like band and appendage. Maximum Likelihood and Bayesian Inference phylogenetic analyses, based on DNA sequence data from ITS, LSU, SSU and TEF-1α regions, provide further evidence that the fungus is a distinct genus within this family. The new genus is compared with similar genera, such as Linocarpon and Neolinocarpon. Descriptions, illustrations and notes are provided for the new taxon.


Sign in / Sign up

Export Citation Format

Share Document