scholarly journals Enhanced Arsenic Tolerance in Triticum aestivum Inoculated with Arsenic-Resistant and Plant Growth Promoter Microorganisms from a Heavy Metal-Polluted Soil

2019 ◽  
Vol 7 (9) ◽  
pp. 348 ◽  
Author(s):  
Javiera Soto ◽  
Javier Ortiz ◽  
Hector Herrera ◽  
Alejandra Fuentes ◽  
Leonardo Almonacid ◽  
...  

In soils multi-contaminated with heavy metal and metalloids, the establishment of plant species is often hampered due to toxicity. This may be overcome through the inoculation of beneficial soil microorganisms. In this study, two arsenic-resistant bacterial isolates, classified as Pseudomonas gessardii and Brevundimonas intermedia, and two arsenic-resistant fungi, classified as Fimetariella rabenhortii and Hormonema viticola, were isolated from contaminated soil from the Puchuncaví valley (Chile). Their ability to produce indoleacetic acid and siderophores and mediate phosphate solubilization as plant growth-promoting properties were evaluated, as well as levels of arsenic resistance. A real time PCR applied to Triticum aestivum that grew in soil inoculated with the bacterial and fungal isolates was performed to observe differences in the relative expression of heavy metal stress defense genes. The minimum inhibitory concentration of the bacterial strains to arsenate was up to 7000 mg·L−1 and that of the fungal strains was up to 2500 mg·L−1. P. gessardi was able to produce siderophores and solubilize phosphate; meanwhile, B. intermedia and both fungi produced indoleacetic acid. Plant dry biomass was increased and the relative expression of plant metallothionein, superoxide dismutase, ascorbate peroxidase and phytochelatin synthase genes were overexpressed when P. gessardii plus B. intermedia were inoculated.

Author(s):  
Rizwan Sheirdil ◽  
Rifat Hayat ◽  
Xiao-Xia Zhang ◽  
Nadeem Abbasi ◽  
Safdar Ali ◽  
...  

Plant growth promoting rhizobacteria (PGPR) are capable to reduce the use of chemical fertilizers input cost of farmer. Keeping in view the study was designed to investigate and evaluate inoculation effect of indigenous rhizospheric bacteria on growth and yield of wheat (Triticum aestivum L.) under in vitro and in vivo conditions using different treatments. Ten potential strains were selected on the basis of their ACC deaminase activity, siderophore production, P-solubilization and production of indole acetic acid (IAA). Further these strains were tested in three different experiments (growth chamber, pot and field). We found significant increase in crop growth response to the inoculants in comparison with un-inoculated control. In pot and field trial we tested PGPR with recommended dose of inorganic fertilizers. The results of present study revealed that inoculation of bacterial strains with wheat seeds significantly increased plant growth and improved crop yield. Results of present study reveal that these strains could be employed in different combinations and can get higher yield in case of half recommended doses of inorganic fertilizers along with consortium of strains in comparison with sole application of recommended dose of fertilizer and with consortium of strains. These strains were further identified by 16Sr RNA gene sequencing, fatty acid profile and biolog. It can be concluded that inoculated bacteria have more potential and contributes in good crop quality, increased yield when they are applied in combination, thus have potential to minimize use of chemical fertilizers.


2016 ◽  
Vol 14 (4) ◽  
pp. e0810 ◽  
Author(s):  
Insaf Bankaji ◽  
Noomene Sleimi ◽  
Aurelio Gómez-Cadenas ◽  
Rosa M. Pérez-Clemente

The objective of the present work was to evaluate the extent of Cd- and Cu-induced oxidative stress and the antioxidant response triggered in the halophyte species Atriplex halimus after metallic trace elements exposure. Plants were treated for one month with Cd2+ or Cu2+ (400 µM) in the absence or presence of 200 mM NaCl in the irrigation solution. The interaction between salinity and heavy metal stress was analyzed in relation to plant growth, tissue ion contents (Na+, K+ and Mg2+), oxidative damage and antioxidative metabolism. Data indicate that shoot and root weight significantly decreased as a consequence of Cd2+- or Cu2+-induced stress. Metallic stress leads to unbalanced nutrient uptake by reducing the translocation of K+ and Mg2+ from the root to the shoot. The levels of malondialdehyde increased in root tissue when Cd, and especially Cu, were added to the irrigation solution, indicating that oxidative damage occurred. Results showed that NaCl gave a partial protection against Cd and Cu induced toxicity, although these contaminants had distinct influence on plant physiology. It can be concluded that salinity drastically modified heavy metal absorption and improved plant growth. Salinity also decreased oxidative damage, but differently in plants exposed to Cd or Cu stress.


2018 ◽  
Vol 5 (4) ◽  
pp. 182-190 ◽  
Author(s):  
Amit Kumar Pal ◽  
Arpita Chakraborty ◽  
Chandan Sengupta

Rapidly increasing worldwide industrialization has led to many environmental problems by the liberation of pollutants such as heavy metals. Day by day increasing metal contamination in soil and water can be best coped by the interaction of potential plant growth promoting rhizobacteria for plant growth. The effect of plant growth promoting rhizobacteria (PGPR) treatment on growth of chilli plant subjected to heavy metal stress was evaluated. Growth of chilli plant was examined with inoculation of two isolated PGPR (Lysinibacillus varians and Pseudomonas putida) under cadmium (30 ppm), lead (150 ppm) and the combination of heavy metal (Cd+Pb) stress condition. Among these two bacteria L. varians produced slightly better plant growth enhancement. Different growth parameters of chilli plants were reduced under heavy metal stress. Whereas, Cd and Pb tolerant PGPR inoculation, in root associated soil, enhanced plant growth development under test heavy metal contaminated soil. So, these PGPRs may easily be used as bio-fertilizers which will nullify the adverse effect of heavy metal on plant growth.


2021 ◽  
Vol 22 (21) ◽  
pp. 11445
Author(s):  
Md. Najmol Hoque ◽  
Md. Tahjib-Ul-Arif ◽  
Afsana Hannan ◽  
Naima Sultana ◽  
Shirin Akhter ◽  
...  

Heavy metal toxicity is one of the most devastating abiotic stresses. Heavy metals cause serious damage to plant growth and productivity, which is a major problem for sustainable agriculture. It adversely affects plant molecular physiology and biochemistry by generating osmotic stress, ionic imbalance, oxidative stress, membrane disorganization, cellular toxicity, and metabolic homeostasis. To improve and stimulate plant tolerance to heavy metal stress, the application of biostimulants can be an effective approach without threatening the ecosystem. Melatonin (N-acetyl-5-methoxytryptamine), a biostimulator, plant growth regulator, and antioxidant, promotes plant tolerance to heavy metal stress by improving redox and nutrient homeostasis, osmotic balance, and primary and secondary metabolism. It is important to perceive the complete and detailed regulatory mechanisms of exogenous and endogenous melatonin-mediated heavy metal-toxicity mitigation in plants to identify potential research gaps that should be addressed in the future. This review provides a novel insight to understand the multifunctional role of melatonin in reducing heavy metal stress and the underlying molecular mechanisms.


2016 ◽  
Vol 105 ◽  
pp. 19-24 ◽  
Author(s):  
M. Seneviratne ◽  
S. Gunaratne ◽  
T. Bandara ◽  
L. Weerasundara ◽  
N. Rajakaruna ◽  
...  

2009 ◽  
Vol 55 (5) ◽  
pp. 501-514 ◽  
Author(s):  
Elisa Gamalero ◽  
Guido Lingua ◽  
Graziella Berta ◽  
Bernard R. Glick

Heavy metal pollution is a major worldwide environmental concern that has recently motivated researchers to develop a variety of novel approaches towards its cleanup. As an alternative to traditional physical and chemical methods of environmental cleanup, scientists have developed phytoremediation approaches that include the use of plants to remove or render harmless a range of compounds. Both plant growth promoting bacteria (PGPB) and arbuscular mycorrhizal fungi (AMF) can be used to facilitate the process of phytoremediation and the growth of plants in metal-contaminated soils. This review focuses on the recent literature dealing with the effects of plant growth-promoting bacteria and AM fungi on the response of plants to heavy metal stress and points the way to strategies that may facilitate the practical realization of this technology.


Sign in / Sign up

Export Citation Format

Share Document