scholarly journals Life in High Salt Concentrations with Changing Environmental Conditions: Insights from Genomic and Phenotypic Analysis of Salinivibrio sp.

2019 ◽  
Vol 7 (11) ◽  
pp. 577 ◽  
Author(s):  
Jojy John ◽  
Vinu Siva ◽  
Kumari Richa ◽  
Aditya Arya ◽  
Amit Kumar

Life in salt pans with varying chemical compositions require special adaptation strategies at both the physiological and molecular level. The Marakkanam salt pan in South India is characterized with a high fluctuation in salinity (19–490 ppt), Ultravioletradiation, and heavy metal concentrations. Several bacterial species have been isolated and identified in the view of phylogenetic analysis and for the subsequent production of industrially important enzymes. However, limited information exists on the genomic basis of their survival under variable environmental conditions. To this extent, we sequenced the whole genome of the Salinivibrio sp. HTSP, a moderately halophilic bacterium. We analysed the physiological and genomic attributes of Salinivibrio sp. HTSP to elucidate the strategies of adaptation under various abiotic stresses. The genome size is estimated to be 3.39 Mbp with a mean G + C content of 50.6%, including 3150 coding sequences. The genome possessed osmotic stress-related coding sequences, and genes involved in different pathways of DNA repair mechanisms and genes related to the resistance to toxic metals were identified. The periplasmic stress response genes and genes of different oxidative stress mechanisms were also identified. The tolerance capacity of the bacterial isolates to heavy metals, UV-radiation, and salinity was also confirmed through appropriate laboratory experiments under controlled conditions.

2011 ◽  
Vol 61 (5) ◽  
pp. 1127-1132 ◽  
Author(s):  
Xiaowei Wang ◽  
Yanfen Xue ◽  
Yanhe Ma

A Gram-stain-positive, rod-shaped, non-sporulating, motile and moderately halophilic bacterium, designated strain H96B60T, was isolated from a saline soil sample of the Qaidam basin, China. The strain was facultatively anaerobic. Major end products formed from glucose fermentation were acetate, ethanol and lactic acid. The cell-wall peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. The isoprenoid quinone component was menaquinone-6 (MK-6). The predominant cellular fatty acids were C16 : 0, anteiso-C13 : 0 and anteiso-C15 : 0. The genomic DNA G+C content of strain H96B60T was 36.2 mol%. Phylogenetic analysis based on comparative 16S rRNA gene sequences indicated that strain H96B60T represented a novel phyletic lineage within the family Bacillaceae and was related most closely to Halolactibacillus species (96.1–96.4 % similarity). Based on the phenotypic, chemotaxonomic and phylogenetic data presented, strain H96B60T is considered to represent a novel species of a new genus, for which the name Streptohalobacillus salinus gen. nov., sp. nov. is proposed. The type strain of Streptohalobacillus salinus is H96B60T ( = DSM 22440T  = CGMCC 1.7733T).


2015 ◽  
Vol 65 (Pt_9) ◽  
pp. 2943-2948 ◽  
Author(s):  
Wonyong Kim ◽  
Chatuphon Siamphan ◽  
Jong-Hwa Kim ◽  
Ampaitip Sukhoom

A Gram-stain-positive, spore-forming, rod-shaped, motile, strictly aerobic bacterium, designated CAU 1183T, was isolated from marine sand and its taxonomic position was investigated by using a polyphasic approach. The bacterium grew optimally at 30 °C, at pH 8.5 and in the presence of 2 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain CAU 1183T formed a distinct lineage within the genus Oceanobacillus and exhibited the highest similarity to Oceanobacillus chungangensis CAU 1051T (97.6 %). The strain contained MK-7 as the predominant isoprenoid quinone and anteiso-C15 : 0 was the major cellular fatty acid. The cell-wall peptidoglycan contained meso-diaminopimelic acid. The polar lipid pattern of strain CAU 1183T consisted of diphosphatidylglycerol, phosphatidylglycerol and unidentified lipids, including two phospholipids, two glycolipids, a phosphoglycolipid and two lipids. The G+C content of the genomic DNA was 37.5 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain CAU 1183T should be assigned to a novel species in the genus Oceanobacillus, for which the name Oceanobacillus arenosus sp. nov. is proposed. The type strain is CAU 1183T ( = KCTC 33037T = CECT 8560T).


2017 ◽  
Vol 199 (9) ◽  
pp. 1277-1281 ◽  
Author(s):  
Tong-Wei Guan ◽  
Lei Tian ◽  
En-Yuan Li ◽  
Shu-Kun Tang ◽  
Xiao-Ping Zhang

2019 ◽  
Vol 69 (5) ◽  
pp. 1313-1319 ◽  
Author(s):  
Zhuang Guo ◽  
Weicheng Li ◽  
Yurong Wang ◽  
Qiangchuan Hou ◽  
Huijun Zhao ◽  
...  

2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Liviana Ricci ◽  
Joanna Mackie ◽  
Megan D. Lenardon ◽  
Caitlin Jukes ◽  
Ahmed N. Hegazy ◽  
...  

The human gut microbiota enhances the host’s resistance to enteric pathogens via colonisation resistance, a phenomenon that is driven by multiple mechanisms, such as production of antimicrobial metabolites and activation of host immune responses. However, there is limited information on how individual gut bacterial species, particularly many of the dominant anaerobes, might impact the host’s defence. This study investigated the potential of specific human gut isolates to bolster the host’s resistance to infection. First, by antagonising the opportunistic fungal pathogen Candida albicans, and secondly, by modulating the killing capacity of human-isolated macrophages in vitro. Co-culturing C. albicans with faecal microbiota from different healthy individuals revealed varying levels of fungal inhibition. In vitro assays with a panel of representative human gut anaerobes confirmed that culture supernatants from certain bacterial isolates, in particular of Bifidobacterium adolescentis, significantly inhibited C. albicans growth. Mechanistic studies revealed that microbial fermentation acids including acetate and lactate, in combination with the associated decrease in pH, were strong drivers of this inhibitory activity. In the second in vitro assay, human-isolated macrophages were exposed to bacterial supernatants, and subsequently tested for their capacity to eliminate adherent-invasive Escherichia coli. Among the gut anaerobes tested, B. adolescentis was revealed to exert the strongest immunostimulatory and killing effect when compared to the unstimulated macrophages control. B. adolescentis is known to be stimulated by dietary consumption of resistant starch andmay therefore represent an attractive target for the development of probiotic and prebiotic interventions tailored to enhancethe host’s natural defences against infection.


Author(s):  
Auttaporn Booncharoen ◽  
Wonnop Visessanguan ◽  
Nattakorn Kuncharoen ◽  
Supalurk Yiamsombut ◽  
Pannita Santiyanont ◽  
...  

An aerobic, Gram-stain-positive, endospore-forming, rod-shaped and moderately halophilic strain SKP4-6T, was isolated from shrimp paste (Ka-pi) collected from Samut Sakhon Province, Thailand. Phylogenetic analysis revealed that strain SKP4-6T belonged to the genus Halobacillus and was most closely related to Halobacillus salinus JCM 11546T (98.6 %), Halobacillus locisalis KCTC 3788T (98.6 %) and Halobacillus yeomjeoni KCTC 3957T (98.6 %) based on 16S rRNA gene sequence similarity. The digital DNA–DNA hybridization (dDDH) and average nucleotide identity (ANI) values between strain SKP4-6T and its related species were 18.2–19.3 % and 69.84–84.51 %, respectively, which were lower than the threshold recommended for species delineation. The strain grew optimally at 30–40 °C, at pH 7.0 and with 10–15 % (w/v) NaCl. It contained l-Orn–d-Asp in the cell wall peptidoglycan. The DNA G+C content was 44.8 mol%. The major fatty acids were iso-C15 : 0, anteiso-C15 : 0 and anteiso-C17 : 0. The predominant isoprenoid quinone was MK-7. Phosphatidylglycerol and diphosphatidylglycerol were present as major polar lipids. Based on this polyphasic approach, digital DNA–DNA relatedness and ANI values, strain SKP4-6T represents a novel species of the genus Halobacillus , for which the name Halobacillus fulvus sp. nov. is proposed. The type strain is SKP4-6T (=JCM 32624T=TISTR 2595T).


Author(s):  
Lingmin Jiang ◽  
Won Yong Jung ◽  
Zhun Li ◽  
Mi-Kyung Lee ◽  
Seung-Hwan Park ◽  
...  

A Gram-stain-positive, facultatively anaerobic, endospore-forming, rod-shaped strain, AGMB 02131T, which grew at 20–40 °C (optimum 30 °C), pH 3.0–11.0 (optimum pH 4.0) and in the presence of 0–18 % (w/v) NaCl (optimum 10 %), was isolated from a cow faecal sample and identified as a novel strain using a polyphasic taxonomic approach. The phylogenetic analysis based on 16S rRNA gene sequences along with the whole genome (92 core gene sets) revealed that AGMB 02131T formed a group within the genus Peribacillus , and showed the highest sequence similarity with Peribacillus endoradicis DSM 28131T (96.9 %), following by Peribacillus butanolivorans DSM 18926T (96.6 %). The genome of AGMB 02131T comprised 70 contigs, the chromosome length was 4 038 965 bp and it had a 38.5 % DNA G+C content. Digital DNA–DNA hybridization revealed that AGMB 02131T displayed 21.4 % genomic DNA relatedness with the most closely related strain, P. butanolivorans DSM 18926T. AGMB 02131T contains all of the conserved signature indels that are specific for members of the genus Peribacillus . The major cellular fatty acids (>10 %) of AGMB 02131T were C18 : 1ω9c, C18:0 and C16 : 0. The major polar lipids present were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. On the basis of the phenotypic, phylogenetic, genomic and chemotaxonomic features, AGMB 02131T represents a novel species of the genus Peribacillus , for which the name Peribacillus faecalis sp. nov. is proposed. The type strain is AGMB 02131T (=KCTC 43221T=CCTCC AB 2020077T).


Sign in / Sign up

Export Citation Format

Share Document