scholarly journals Do Foliar Endophytes Matter in Litter Decomposition?

2020 ◽  
Vol 8 (3) ◽  
pp. 446 ◽  
Author(s):  
Emily R. Wolfe ◽  
Daniel J. Ballhorn

Litter decomposition rates are affected by a variety of abiotic and biotic factors, including the presence of fungal endophytes in host plant tissues. This review broadly analyzes the findings of 67 studies on the roles of foliar endophytes in litter decomposition, and their effects on decomposition rates. From 29 studies and 1 review, we compiled a comprehensive table of 710 leaf-associated fungal taxa, including the type of tissue these taxa were associated with and isolated from, whether they were reported as endo- or epiphytic, and whether they had reported saprophytic abilities. Aquatic (i.e., in-stream) decomposition studies of endophyte-affected litter were significantly under-represented in the search results (p < 0.0001). Indicator species analyses revealed that different groups of fungal endophytes were significantly associated with cool or tropical climates, as well as specific plant host genera (p < 0.05). Finally, we argue that host plant and endophyte interactions can significantly influence litter decomposition rates and should be considered when interpreting results from both terrestrial and in-stream litter decomposition experiments.

Author(s):  
Emily Wolfe ◽  
Daniel Ballhorn

Litter decomposition rates are affected by a variety of abiotic and biotic factors, including the presence of fungal endophytes in host plant tissues. This review broadly analyzes the findings of 67 studies on the roles of foliar endophytes in litter decomposition, and their effects on decomposition rates. Aquatic (i.e., in-stream) decomposition studies of endophyte-affected litter were significantly under-represented in the search results (P &lt; 0.0001). Indicator species analyses revealed that different groups of fungal endophytes were significantly associated with cool or tropical climates, as well as specific plant host genera (P &lt; 0.05). Finally, we argue that host plant and endophyte interactions can significantly influence litter decomposition rates and should be considered when interpreting results from both terrestrial and in-stream litter decomposition experiments.


Ecology ◽  
1979 ◽  
Vol 60 (2) ◽  
pp. 265-271 ◽  
Author(s):  
C. R. Vossbrinck ◽  
D. C. Coleman ◽  
T. A. Woolley

2019 ◽  
Vol 83 (2) ◽  
pp. 109-118 ◽  
Author(s):  
M Orruño ◽  
C Parada ◽  
E Ogayar ◽  
VR Kaberdin ◽  
I Arana

2021 ◽  
Vol 9 (1) ◽  
pp. 148
Author(s):  
Marius Bredon ◽  
Elisabeth Depuydt ◽  
Lucas Brisson ◽  
Laurent Moulin ◽  
Ciriac Charles ◽  
...  

The crucial role of microbes in the evolution, development, health, and ecological interactions of multicellular organisms is now widely recognized in the holobiont concept. However, the structure and stability of microbiota are highly dependent on abiotic and biotic factors, especially in the gut, which can be colonized by transient bacteria depending on the host’s diet. We studied these impacts by manipulating the digestive microbiota of the detritivore Armadillidium vulgare and analyzing the consequences on its structure and function. Hosts were exposed to initial starvation and then were fed diets that varied the different components of lignocellulose. A total of 72 digestive microbiota were analyzed according to the type of the diet (standard or enriched in cellulose, lignin, or hemicellulose) and the period following dysbiosis. The results showed that microbiota from the hepatopancreas were very stable and resilient, while the most diverse and labile over time were found in the hindgut. Dysbiosis and selective diets may have affected the host fitness by altering the structure of the microbiota and its predicted functions. Overall, these modifications can therefore have effects not only on the holobiont, but also on the “eco-holobiont” conceptualization of macroorganisms.


Ecosystems ◽  
2021 ◽  
Author(s):  
Miguel Berdugo ◽  
Dinorah O. Mendoza-Aguilar ◽  
Ana Rey ◽  
Victoria Ochoa ◽  
Beatriz Gozalo ◽  
...  

2021 ◽  
Vol 9 (5) ◽  
pp. 1036
Author(s):  
Dongmei Lyu ◽  
Levini A. Msimbira ◽  
Mahtab Nazari ◽  
Mohammed Antar ◽  
Antoine Pagé ◽  
...  

Terrestrial plants evolution occurred in the presence of microbes, the phytomicrobiome. The rhizosphere microbial community is the most abundant and diverse subset of the phytomicrobiome and can include both beneficial and parasitic/pathogenic microbes. Prokaryotes of the phytomicrobiome have evolved relationships with plants that range from non-dependent interactions to dependent endosymbionts. The most extreme endosymbiotic examples are the chloroplasts and mitochondria, which have become organelles and integral parts of the plant, leading to some similarity in DNA sequence between plant tissues and cyanobacteria, the prokaryotic symbiont of ancestral plants. Microbes were associated with the precursors of land plants, green algae, and helped algae transition from aquatic to terrestrial environments. In the terrestrial setting the phytomicrobiome contributes to plant growth and development by (1) establishing symbiotic relationships between plant growth-promoting microbes, including rhizobacteria and mycorrhizal fungi, (2) conferring biotic stress resistance by producing antibiotic compounds, and (3) secreting microbe-to-plant signal compounds, such as phytohormones or their analogues, that regulate aspects of plant physiology, including stress resistance. As plants have evolved, they recruited microbes to assist in the adaptation to available growing environments. Microbes serve themselves by promoting plant growth, which in turn provides microbes with nutrition (root exudates, a source of reduced carbon) and a desirable habitat (the rhizosphere or within plant tissues). The outcome of this coevolution is the diverse and metabolically rich microbial community that now exists in the rhizosphere of terrestrial plants. The holobiont, the unit made up of the phytomicrobiome and the plant host, results from this wide range of coevolved relationships. We are just beginning to appreciate the many ways in which this complex and subtle coevolution acts in agricultural systems.


2021 ◽  
Author(s):  
Shanshan Song ◽  
Xiaokang Hu ◽  
Jiangling Zhu ◽  
Tianli Zheng ◽  
Fan Zhang ◽  
...  

1995 ◽  
Vol 73 (S1) ◽  
pp. 1275-1283 ◽  
Author(s):  
Shigehito Takenaka

To develop efficient control measures against fungal plant pathogens, the dynamics of host plant colonization during disease development and the interactions among fungi within host plant tissues need to be clarified. These studies require accurate quantitative estimation of specific fungal biomass in plant tissues. This has been approached by direct-microscopic methods, cultural methods, chemical determinations of fungal components, serological methods, and molecular methods. Among these methods, serological and molecular methods provide rapid, specific, and sensitive quantitative measures of fungal biomass in host plant tissues. Therefore, studies on fungal dynamics of host plant colonization using these two methods are presented. Some examples of species interactions among pathogenic fungi within host plants, such as synergism and competition, are reviewed and the usefulness of serological and molecular methods for studies on these interactions is presented. These quantitative methods will provide helpful information for understanding the ecology of plant pathogenic fungi, such as the dynamics of host plant colonization and species interactions. Key words: quantitative methods, fungal biomass, ELISA, PCR, fungal colonization, species interaction.


Sign in / Sign up

Export Citation Format

Share Document