scholarly journals Environmental Influences of High-Density Agricultural Animal Operation on Human Forearm Skin Microflora

2020 ◽  
Vol 8 (10) ◽  
pp. 1481
Author(s):  
Mengfei Peng ◽  
Debabrata Biswas

The human forearm skin microbiome ecosystem contains rich and diverse microbes, which are influenced by environmental exposures. The microbial representatives can be exchanged between human and environment, specifically animals, by which they share certain or similar epidermal microbes. Livestock and poultry are the microbial sources that are associated with the transmission of community-based pathogenic infections. Here, in this study, we proposed investigating the environmental influences introduced by livestock/poultry operations on forearm skin microflora of on-site farm workers. A total of 30 human skin swab samples were collected from 20 animal workers in dairy or integrated farms and 10 healthy volunteer controls. The skin microbiome was 16S metagenomics that were sequenced with Illumina MiSeq system. For skin microbial community analysis, the abundance of major phyla and genera as well as alpha and beta diversities were compared across groups. We identified distinctive microbial compositional patterns on skin of workers in farm with different animal commodities. Workers in integrated farms containing various animals were associated with higher abundances of epidermal Proteobacteria, especially Pseudomonas and Acinetobacter, but lower Actinobacteria, especially Corynebacterium and Propionibacterium. For those workers with frequent dairy cattle operations, their Firmicutes in the forearm skin microbiota were enriched. Furthermore, farm animal operations also reduced Staphylococcus and Streptococcus, as well as modulated the microbial biodiversity in farm workers’ skin microbiome. The alterations of forearm skin microflora in farm workers, influenced by their frequent farm animal operations, may increase their risk in skin infections with unusual pathogens and epidermal diseases.

2015 ◽  
Vol 15 (1) ◽  
Author(s):  
Liyou Wu ◽  
Chongqing Wen ◽  
Yujia Qin ◽  
Huaqun Yin ◽  
Qichao Tu ◽  
...  

2018 ◽  
Vol 39 (2) ◽  
pp. e12596 ◽  
Author(s):  
Yanyan Tang ◽  
Xianrong Zhou ◽  
Shenglan Huang ◽  
Yuzhu Li ◽  
Mou Long ◽  
...  

ACS Omega ◽  
2021 ◽  
Author(s):  
Nan Liu ◽  
Ying-ying Li ◽  
Du-juan Ouyang ◽  
Chang-yong Zou ◽  
Wei Li ◽  
...  

2018 ◽  
Vol 19 (3) ◽  
pp. 718-724
Author(s):  
Zhenmin Cheng ◽  
Yuansong Wei ◽  
Min Gao ◽  
Junya Zhang ◽  
Liangchang Zhang ◽  
...  

Abstract A novel wastewater treatment and reuse system (WTRS) combining an anaerobic membrane bioreactor (AnMBR) and an aerobic membrane bioreactor (MBR) with the design capacity of 115 L/d was developed for a terrestrial-based controlled ecological life support system (CELSS). Results clearly showed that the WTRS realized mineralization of organic compounds and reservation of nitrogenous nutrient, therefore converting the effluent into replenishment for the hydroponic system. Trace gas emission from the WTRS could meet requirements for the whole CELSS. Compared with physico-chemical processes, the specific consumables consumption of the WTRS was advantageous but its specific energy consumption is still in need of improvement. Results of microbial community analysis were consistent with the running state of the AnMBR and the MBR.


Sign in / Sign up

Export Citation Format

Share Document