scholarly journals Loop-Mediated Isothermal Amplification Allows Rapid, Simple and Accurate Molecular Diagnosis of Human Cutaneous and Visceral Leishmaniasis Caused by Leishmania infantum When Compared to PCR

2021 ◽  
Vol 9 (3) ◽  
pp. 610
Author(s):  
Ana Victoria Ibarra-Meneses ◽  
Carmen Chicharro ◽  
Carmen Sánchez ◽  
Emilia García ◽  
Sheila Ortega ◽  
...  

Loop-mediated isothermal amplification allows the rapid, sensitive and specific amplification of DNA without complex and expensive equipment. We compared the diagnostic performance of Loopamp™ Leishmania Detection Kit (Eiken Chemical Co., Ltd., Tokyo, Japan) with conventional and real-time polymerase chain reaction (PCR) for human cutaneous and visceral leishmaniasis caused by L. infantum. A total of 230 DNA samples from cutaneous (CL) and visceral (VL) leishmaniasis cases and controls from Spain, characterized by Leishmania nested PCR (LnPCR) were tested by: (i) the Loopamp™ Leishmania Detection Kit (Loopamp), run on Genie III real-time fluorimeter (OptiGene, UK); and (ii) real-time quantitative PCR (qPCR). The Loopamp test returned 98.8% (95% confidence interval—CI: 96.0–100.00) sensitivity and specificity of 97.7% (95% CI: 92.2–100) on VL samples, and 100% (95% CI: 99.1–100) sensitivity and 100.0% (95% CI: 98.8–100.0) specificity on CL samples. The Loopamp time-to-positivity (Tp) obtained by real-time fluorimetry showed excellent concordance (C = 97.91%) and strong correlation (r = 0.799) with qPCR’s cycle threshold (Ct). The performance of Loopamp is comparable to that of LnPCR and qPCR in the diagnosis of cutaneous and visceral leishmaniasis due to L. infantum. The excellent correlation between the Tp and Ct should be further investigated to determine the accuracy of Loopamp to quantify parasite load in tissues.

2011 ◽  
Vol 24 (1) ◽  
pp. 138-141 ◽  
Author(s):  
Shan-Chia Ou ◽  
Joseph J. Giambrone ◽  
Kenneth S. Macklin

A TaqMan real-time polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP) assay were developed to detect Gallid herpesvirus 1 (GaHV-1, formerly Infectious laryngotracheitis virus). The standard curve of real-time PCR was established, and the sensitivity reached 10 copies/μl. In the current study, the conversion between viral titer and GaHV-1 genomic copy number was constructed. Six primers for LAMP assay amplified target gene at 65°C within 45 min, and the detection limit was 60 copies/μl. The 6 primers were highly specific, sensitive, and reproducible for detection of GaHV-1. Although the sensitivity of LAMP was lower than that of real-time PCR, LAMP was faster, less expensive, and did not require a thermocycler. The LAMP assay would be a viable alternative assay in diagnostic laboratories that do not employ real-time PCR technology.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247618
Author(s):  
Yuta Mikami ◽  
Kazumasa Fuwa ◽  
Eriko Arima ◽  
Yasuo Suda ◽  
Itaru Yanagihara ◽  
...  

Introduction A simple and rapid diagnosis of Ureaplasma spp. is required for the choice of the appropriate antibiotic. However, an ideal detection method has not been available. This study examines the efficacy of the loop-mediated isothermal amplification (LAMP) assay, which provides rapid and sensitive results, to detect Ureaplasma spp. in respiratory tract samples of preterm infants. Methods The study included preterm infants born before 32 weeks of gestation admitted Kagoshima City Hospital from June 2018 to March 2020. Nasopharyngeal swabs and/or tracheal aspirates were obtained in the first seven postnatal days. One hundred sixty-seven nasopharyngeal swabs and 101 tracheal aspirates were analyzed by LAMP, culture, and quantitative real-time polymerase chain reaction. Results All 167 infants had a median (range) gestational age of 28.7 weeks (22.3–30.9) and birthweight 1030g (322–1828). One hundred sixty-seven nasopharyngeal swabs and 101 tracheal aspirates were obtained. In the results of nasopharyngeal swabs, the sensitivity and specificity of LAMP were 73.9% (17/23) and 97.2% (140/144), whereas those of quantitative real-time polymerase chain reaction were 73.9% (17/23) and 95.8% (138/144), compared to culture. In the results of tracheal aspirates, the sensitivity and specificity of LAMP were 89.5% (17/19) and 92.7% (76/82), whereas those of quantitative real-time polymerase chain reaction were 89.5% (17/19) and 93.9% (77/82), compared to culture. Conclusions The LAMP assay showed similar sensitivity and specificity with quantitative real-time polymerase chain reaction in the respiratory tracts of preterm infants including extremely preterm infants during the immediate postnatal period. Therefore, the LAMP is a practical alternative for the early detection so that appropriate antibiotics can be administered for preventing BPD.


2016 ◽  
Vol 82 (6) ◽  
pp. 1799-1806 ◽  
Author(s):  
Yogendra H. Kanitkar ◽  
Robert D. Stedtfeld ◽  
Robert J. Steffan ◽  
Syed A. Hashsham ◽  
Alison M. Cupples

ABSTRACTReal-time quantitative PCR (qPCR) protocols specific to the reductive dehalogenase (RDase) genesvcrA,bvcA, andtceAare commonly used to quantifyDehalococcoidesspp. in groundwater from chlorinated solvent-contaminated sites. In this study, loop-mediated isothermal amplification (LAMP) was developed as an alternative approach for the quantification of these genes. LAMP does not require a real-time thermal cycler (i.e., amplification is isothermal), allowing the method to be performed using less-expensive and potentially field-deployable detection devices. Six LAMP primers were designed for each of three RDase genes (vcrA,bvcA, andtceA) using Primer Explorer V4. The LAMP assays were compared to conventional qPCR approaches using plasmid standards, two commercially available bioaugmentation cultures, KB-1 and SDC-9 (both containDehalococcoidesspecies). DNA was extracted over a growth cycle from KB-1 and SDC-9 cultures amended with trichloroethene and vinyl chloride, respectively. All three genes were quantified for KB-1, whereas onlyvcrAwas quantified for SDC-9. A comparison of LAMP and qPCR using standard plasmids indicated that quantification results were similar over a large range of gene concentrations. In addition, the quantitative increase in gene concentrations over one growth cycle of KB-1 and SDC-9 using LAMP was comparable to that of qPCR. The developed LAMP assays forvcrAandtceAgenes were validated by comparing quantification on the Gene-Z handheld platform and a real-time thermal cycler using DNA isolated from eight groundwater samples obtained from an SDC-9-bioaugmented site (Tulsa, OK). These assays will be particularly useful at sites subject to bioaugmentation with these two commonly usedDehalococcoidesspecies-containing cultures.


Author(s):  
Keerti Kaumudee Dixit ◽  
V. Ramesh ◽  
Ratan Gupta ◽  
Narendra Singh Negi ◽  
Ruchi Singh ◽  
...  

Despite the dwindling number of visceral leishmaniasis (VL) cases in India, there is an urgent need for early and unequivocal diagnostics for controlling and preventing the reemergence of VL. Post–kala-azar dermal leishmaniasis (PKDL), a dermal sequela of VL, serves as a reservoir of the parasite. Diagnosis of PKDL, especially the macular variant, is challenging and poses impediment toward attainment of VL elimination. In this study, a real-time fluorimetry loop-mediated isothermal amplification (RealAmp) assay has been established for the detection of different clinical manifestations of leishmaniasis. The study included 150 leishmaniasis patients (25 VL, 25 cutaneous leishmaniasis [CL], and 100-PKDL) along with 120 controls. The assay demonstrated sensitivity of 100% (95% CI: 86.68–100) for diagnosis of VL and PKDL (95% CI: 79.61–100) and 96% (95% CI: 86.68–100) for CL with 100% specificity. Moreover, considering the cardinal role of PKDL, diagnosis using minimally invasive slit aspirate was explored, which demonstrated remarkable sensitivity of 96% (95% CI: 87.64–98.47). As a test of cure for PKDL, RealAmp successfully detected parasite in two of posttreatment cases who later reported relapse on follow-up. Also, direct sample lysis using slit aspirate was attempted in a small group that yielded sensitivity of 89% (95% CI: 67.20–96.90). RealAmp depicted excellent diagnostic accuracy in the diagnosis of leishmaniasis in concordance with the established SYBR Green I–based visual loop-mediated isothermal amplification (LAMP) and the reference comparator real-time PCR. The study endorsed the employment of LAMP either as visual-LAMP or RealAmp for an accurate and expeditious diagnosis of PKDL and as a tool for assessment of cure.


Sign in / Sign up

Export Citation Format

Share Document