scholarly journals Ornithobacterium rhinotracheale: MALDI-TOF MS and Whole Genome Sequencing Confirm That Serotypes K, L and M Deviate from Well-Known Reference Strains and Numerous Field Isolates

2021 ◽  
Vol 9 (5) ◽  
pp. 1006
Author(s):  
Merima Alispahic ◽  
Lukas Endler ◽  
Michael Hess ◽  
Claudia Hess

Ornithobacterium rhinotracheale is one of the most important bacterial agents of respiratory diseases in poultry. For correct identification and characterization of this fastidious bacterium, reliable diagnostic tools are essential. Still, phenotypic tests are used to identify O. rhinotracheale and serotyping is the most common method for characterization, despite known drawbacks and disadvantages such as divergent results, cross-reactivity between strains, or the non-typeability of strains. The intention of the present study was to evaluate MALDI-TOF MS and whole genome sequencing for the identification and characterization of O. rhinotracheale. For this purpose, a selection of 59 well-defined reference strains and 47 field strains derived from outbreaks on Austrian turkey farms were investigated by MALDI-TOF MS. The field strains originated from different geographical areas in Austria with some of the isolates derived from multiple outbreaks on farms within a year, or recurrent outbreaks over several years. MALDI-TOF MS proved a suitable method for identification of O. rhinotracheale to genus or species level except for 3 strains representing serotypes M, K and F. Phylogenetic analysis showed that most strains grouped within one cluster even though they were comprised of different serotypes, while serotypes F, K, and M clearly formed a different cluster. All field isolates from turkey farms clustered together, independent of the origin of the isolates, e.g., geographical area, multiple outbreaks within a year or recurrent outbreaks over several years. Whole genome sequencing of serotype M, K and F strains confirmed the extraordinary status and deviation from known fully-sequenced strains due to a lack of sequence similarity. This was further confirmed by alignments of single genes (16S-RNA and rpoB) and multilocus sequence typing although the demarcation was less obvious. Altogether, the results indicate that these three serotypes belong to a different species than O. rhinotracheale, and might even be members of multiple new species.

Author(s):  
Carlo Casanova ◽  
Elia Lo Priore ◽  
Adrian Egli ◽  
Helena M. B. Seth-Smith ◽  
Lorenz Räber ◽  
...  

Abstract Background A number of episodes of nosocomial Agrobacterium spp. bacteremia (two cases per year) were observed at Bern University Hospital, Switzerland, from 2015 to 2017. This triggered an outbreak investigation. Methods Cases of Agrobacterium spp. bacteremias that occurred between August 2011 and February 2017 were investigated employing line lists, environmental sampling, rapid protein- (MALDI-TOF MS), and genome-based typing (pulsed field gel electrophoresis and whole genome sequencing) of the clinical isolates. Results We describe a total of eight bacteremia episodes due to A. radiobacter (n = 2), Agrobacterium genomovar G3 (n = 5) and A. pusense (n = 1). Two tight clusters were observed by WGS typing, representing the two A. radiobacter isolates (cluster I, isolated in 2015) and four of the Agrobacterium genomovar G3 isolates (cluster II, isolated in 2016 and 2017), suggesting two different point sources. The epidemiological investigations revealed two computer tomography (CT) rooms as common patient locations, which correlated with the two outbreak clusters. MALDI-TOF MS permitted faster evaluation of strain relatedness than DNA-based methods. High resolution WGS-based typing confirmed the MALDI-TOF MS clustering. Conclusions We report clinical and epidemiological characteristics of two outbreak clusters with Agrobacterium. spp. bacteremia likely acquired during CT contrast medium injection and highlight the use of MALDI-TOF MS as a rapid tool to assess relatedness of rare gram-negative pathogens in an outbreak investigation.


2018 ◽  
Vol 6 (3) ◽  
pp. 185-192
Author(s):  
Linda Boultifat ◽  
◽  
assia guendouze ◽  
mohamedabdelhafid hamidechi ◽  
◽  
...  

2020 ◽  
Vol 8 (12) ◽  
pp. 2028
Author(s):  
Athanasios Zervas ◽  
Marie Rønne Aggerbeck ◽  
Henrietta Allaga ◽  
Mustafa Güzel ◽  
Marc Hendriks ◽  
...  

The phylogeny, identification, and characterization of 33 B. cereus sensu lato isolates originating from 17 agricultural soils from 11 countries were analyzed on the basis of whole genome sequencing. Phylogenetic analyses revealed all isolates are divided into six groups, which follows the generally accepted phylogenetic division of B. cereus sensu lato isolates. Four different identification methods resulted in a variation in the identity of the isolates, as none of the isolates were identified as the same species by all four methods—only the recent identification method proposed directly reflected the phylogeny of the isolates. This points to the importance of describing the basis and method used for the identification. The presence and percent identity of the protein product of 19 genes potentially involved in pathogenicity divided the 33 isolates into groups corresponding to phylogenetic division of the isolates. This suggests that different pathotypes exist and that it is possible to differentiate between them by comparing the percent identity of proteins potentially involved in pathogenicity. This also reveals that a basic link between phylogeny and pathogenicity is likely to exist. The geographical distribution of the isolates is not random: they are distributed in relation to their division into the six phylogenetic groups, which again relates to different ecotypes with different temperature growth ranges. This means that we find it easier to analyze and understand the results obtained from the 33 B. cereus sensu lato isolates in a phylogenetic, patho-type and ecotype-oriented context, than in a context based on uncertain identification at the species level.


Sign in / Sign up

Export Citation Format

Share Document