scholarly journals Metagenomic Insight of a Full Scale Eco-Friendly Treatment System of Textile Dye Wastewater Using Bioaugmentation of the Composite Culture CES-1

2021 ◽  
Vol 9 (7) ◽  
pp. 1503
Author(s):  
Aalfin Emmanuel Santhanarajan ◽  
Woo-Jun Sul ◽  
Keun-Je Yoo ◽  
Hoon-Je Seong ◽  
Hong-Gi Kim ◽  
...  

Effects of bioaugmentation of the composite microbial culture CES-1 on a full scale textile dye wastewater treatment process were investigated in terms of water quality, sludge reduction, dynamics of microbial community structures and their functional genes responsible for degradation of azo dye, and other chemicals. The removal efficiencies for Chemical Oxygen Demand (COD), Total Nitrogen (T-N), Total Phosphorus (T-P), Suspended Solids (SS), and color intensity (96.4%, 78.4, 83.1, 84.4, and 92.0, respectively) 300–531 days after the augmentation were generally improved after bioaugmentation. The denitrification linked to T-N removal appeared to contribute to the concomitant COD removal that triggered a reduction of sludge (up to 22%) in the same period of augmentation. Azo dye and aromatic compound degradation and other downstream pathways were highly metabolically interrelated. Augmentation of CES-1 increased microbial diversity in the later stages of augmentation when a strong microbial community selection of Acinetobacterparvus, Acinetobacterjohnsonii, Marinobacter manganoxydans, Verminephrobacter sp., and Arcobacter sp. occurred. Herein, there might be a possibility that the CES-1 augmentation could facilitate the indigenous microbial community successions so that the selected communities made the augmentation successful. The metagenomic analysis turned out to be a reasonable and powerful tool to provide with new insights and useful biomarkers for the complex environmental conditions, such as the full scale dye wastewater treatment system undergoing bioaugmentation.

2009 ◽  
Vol 60 (6) ◽  
pp. 1565-1574 ◽  
Author(s):  
S. Nilratnisakorn ◽  
P. Thiravetyan ◽  
W. Nakbanpote

Textile wastewater is contaminated by reactive dye causing unattractive levels of wastewater color, high pH and high salt content when discharged into public water systems. Decolorization of textile wastewater by plant, phytoremediation, is an alternative, sustainable method which is suitable for long term operation. Narrow-leaved cattails are one species of wetland plant with efficiency for decolorizing and remediating textile wastewater. In addition, chemical oxygen demand (COD) can be lowered and dye residue can be removed. The plant also showed a good salt tolerance even after being exposed to a salt solution for 15 days. The narrow-leaved cattails were set up in a constructed wetland model with a vertical flow system operating from bottom to top for synthetic reactive dye wastewater (SRDW) removal. Narrow-leaved cattails could achieve the removal of SRDW at approximately 0.8 gSRDW m−2 day−1. Decolorization of SRDW by this plant was approximately 60%. The advantage of this method is that it is suitable for textile wastewater management and improvement of wetland. These plants could lower COD, remove dye, sodium and total dissolved solids (TDS) whereas other biological and chemical methods could not remove TDS and dye in the same time. These results suggested that the spongy cell structure of this plant has the ability to absorb large amounts of water and nutrients. Physico-chemical analysis revealed increasing amounts of sulfur, silicon, iron and calcium in the plant leafs and roots after exposure to wastewater. Proteins or amide groups in the plant might help in textile dye removal. Regarding decolorization, this plant accumulates dye in the intercellular space and still grows in this SRDW condition. Hence, it can be noted here that narrow-leaved cattails are efficient for textile dye wastewater treatment.


2021 ◽  
pp. 117763
Author(s):  
Yuchun Yang ◽  
Mohammad Azari ◽  
Craig W. Herbold ◽  
Meng Li ◽  
Huaihai Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document