A constructed wetland model for synthetic reactive dye wastewater treatment by narrow-leaved cattails (Typha angustifolia Linn.)

2009 ◽  
Vol 60 (6) ◽  
pp. 1565-1574 ◽  
Author(s):  
S. Nilratnisakorn ◽  
P. Thiravetyan ◽  
W. Nakbanpote

Textile wastewater is contaminated by reactive dye causing unattractive levels of wastewater color, high pH and high salt content when discharged into public water systems. Decolorization of textile wastewater by plant, phytoremediation, is an alternative, sustainable method which is suitable for long term operation. Narrow-leaved cattails are one species of wetland plant with efficiency for decolorizing and remediating textile wastewater. In addition, chemical oxygen demand (COD) can be lowered and dye residue can be removed. The plant also showed a good salt tolerance even after being exposed to a salt solution for 15 days. The narrow-leaved cattails were set up in a constructed wetland model with a vertical flow system operating from bottom to top for synthetic reactive dye wastewater (SRDW) removal. Narrow-leaved cattails could achieve the removal of SRDW at approximately 0.8 gSRDW m−2 day−1. Decolorization of SRDW by this plant was approximately 60%. The advantage of this method is that it is suitable for textile wastewater management and improvement of wetland. These plants could lower COD, remove dye, sodium and total dissolved solids (TDS) whereas other biological and chemical methods could not remove TDS and dye in the same time. These results suggested that the spongy cell structure of this plant has the ability to absorb large amounts of water and nutrients. Physico-chemical analysis revealed increasing amounts of sulfur, silicon, iron and calcium in the plant leafs and roots after exposure to wastewater. Proteins or amide groups in the plant might help in textile dye removal. Regarding decolorization, this plant accumulates dye in the intercellular space and still grows in this SRDW condition. Hence, it can be noted here that narrow-leaved cattails are efficient for textile dye wastewater treatment.

2017 ◽  
Vol 18 (2) ◽  
pp. 71-78
Author(s):  
Ibrahim Adebayo Bello

Effluents from dye and textile industries are highly contaminated and toxic to the environment. High concentration of non-biodegradable compounds contributes to increased biochemical oxygen demand (BOD) and chemical oxygen demand (COD) of the wastewater bodies.  Dyes found in wastewater from textile industries are carcinogenic, mutagenic or teratogenic. Biological processes involving certain bacteria, fungi, activated carbon and carbon nanotubes (CNTs) are promising methods for treating the waste water. These methods are either inefficient or ineffective.  These complexities necessitates search for new approaches that will offset all the shortcomings of the present solutions to the challenges faced with textile wastewater management. This article reviews the past and recent methods used in the treatment of the textile dye wastewater and the future opportunities for efficient treatment of textiles wastewaters.


Author(s):  
Chandra Devi Raman ◽  
Kanmani Sellappa ◽  
Martin Mkandawire

Abstract The existing knowledge on the reactivity of green iron particles on textile dye and wastewater decolorization is very limited. In this study, the potential of green iron particles synthesized using grape leaves extract on reactive dye (reactive red 195, reactive yellow 145, reactive blue 4 and reactive black 5) decolorization were investigated. 95–98% of decolorization was achieved for all reactive dyes at 1.4–2.0 g/L of green iron. Maximum decolorization was attained at lower dye concentration and showed very little impact on decolorization when pH was increased from 3 to 11. The pseudo-first-order fit confirms the reaction between iron particles and dye molecules with rate constant 0.317–0.422 and it is followed by adsorption, data fit with pseudo-second-order model. Hence, not only adsorption but also the reduction process is involved in the reactive dye decolorization. Benzene, phenyl sodium, 2-chloro-1,3,5-triazine, naphthalene, sodium benzene sulfonate, benzene 1,2 di amine, anthracene-9,10 dione, aniline, phenol, benzene sulfonic acid were the major intermediates detected in dye decolorization and the respective reaction pathway is proposed. Green iron from grape leaves extract demonstrated better performance and it is recognized as the promising cost-effective material for textile wastewater treatment.


2021 ◽  
pp. 127710
Author(s):  
Suhas K. Kadam ◽  
Asif S. Tamboli ◽  
Vishal V. Chandanshive ◽  
Sanjay P. Govindwar ◽  
Yeon-Sik Choo ◽  
...  

2018 ◽  
Vol 41 (2) ◽  
pp. 165-174
Author(s):  
Mahmudur Rahman ◽  
Masud Rana ◽  
Zinia Nasreen ◽  
Md Mainul Hossain ◽  
Ayesha Sharmin

Results on the applicability of microwave assisted synthesized poly(diallyldimethyl ammonium chloride) (polyDADMAC) in reactive dye containing textile wastewater treatment are reported. Diallyldimethylammonium chloride and poly(diallyldimethylammonium chloride) have been characterized by spectral means. The microwave assisted synthesized polyDADMAC has shown some effectiveness in textile wastewater treatment. COD removal efficiency of actual textile wastewater is below 30% whereas the standard dye sample shows about 50-60% COD removal efficiency. TDS and TSS also decreased after treatment of the wastewater with polyDADMAC.Journal of Bangladesh Academy of Sciences, Vol. 41, No. 2, 165-174, 2017


2017 ◽  
Vol 76 (4) ◽  
pp. 823-831 ◽  
Author(s):  
Yang Li ◽  
Jingxin Zhang ◽  
Yaobin Zhang ◽  
Xie Quan

Anaerobic digestion (AD) is a cost-effective technology for the treatment of textile dye wastewater with clear environmental benefits. However, the need to improve process feasibility of high treatment efficiency as well as to shorten hydraulic retention time has raised interest on several intensification techniques. Zero valent iron (ZVI) packed anaerobic digesters have the potential to become an on-site upgrading wastewater treatment technology through building a ZVI bed in a traditional AD plant. However, the experiences and knowledge of scale-up are limited. In this study, a pilot-scale ZVI packed upflow anaerobic sludge bed (ZVI-UASB) was built up and operated for actual dye wastewater treatment in a textile dye industrial park. Results showed that the treatment performance of this digester is higher than that of a traditional AD plant in terms of chemical oxygen demand (COD) removal and color removal. During 90 days of operation, the average COD removal and color removal in ZVI-UASB was maintained at around 19% and 40%, respectively, while it was only 10% and 20%, respectively, in the traditional AD plant.


2012 ◽  
Vol 1 (2) ◽  
pp. 153-166 ◽  
Author(s):  
S. Sathian ◽  
G. Radha ◽  
V. Shanmuga Priya ◽  
M. Rajasimman ◽  
C. Karthikeyan

2020 ◽  
Vol 19 (3) ◽  
pp. 543-560 ◽  
Author(s):  
Naresh Yadav Donkadokula ◽  
Anand Kishore Kola ◽  
Iffat Naz ◽  
Devendra Saroj

Sign in / Sign up

Export Citation Format

Share Document