scholarly journals Geological Controls on Mineralogy and Geochemistry of the Permian and Jurassic Coals in the Shanbei Coalfield, Shaanxi Province, North China

Minerals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 138
Author(s):  
Yunfei Shangguan ◽  
Xinguo Zhuang ◽  
Jing Li ◽  
Baoqing Li ◽  
Xavier Querol ◽  
...  

Coal as the source of critical elements has attracted much attention and the enrichment mechanisms are of significant importance. This paper has an opportunity to investigate the mineralogical and geochemical characteristics of the Permian and Jurassic bituminous coals and associated non-coals from two underground coal mines in the Shanbei Coalfield (Northeast Ordos basin), Shaanxi Province, North China, based on the analysis of X-ray diffraction (XRD), inductively coupled plasma atomic-emission spectrometry (ICP-AES/MS), and scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS). The Jurassic and Permian coals have similar chemical features excluding ash yield, which is significantly higher in the Permian coals. Major mineral matters in the Jurassic coals are quartz, kaolinite, and calcite. By contrast, mineral assemblages of the Permian coals are dominated by kaolinite; and apatite occurring in the middle section’s partings. The Jurassic coals are only enriched in B, whereas the Permian coals are enriched in some trace elements (e.g., Nb, Ta, Th, and REY). Boron has a mixed inorganic and organic association which may be absorbed by organic matter from fluid (or groundwater) or inherited from coal-forming plants. Additionally, climatic variation also plays an important role. As for the Permian coals, kaolinite and apatite as the major carriers of elevated elements; the former were derived from the sedimentary source region (the Yinshan Oldland and the Benxi formation) and later precipitated from Ca-, and P-rich solutions. We deduced that those elevated elements may be controlled by the source rock and diagenetic fluid input. The findings of this work offered new data to figure out the mechanism of trace element enrichment of coal in the Ordos basin.

Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 133
Author(s):  
Henryk R. Parzentny ◽  
Leokadia Róg

It is supposed that the determination of the content and the mode of occurrence of ecotoxic elements (EE) in feed coal play the most significant role in forecasting distribution of EE in the soil and plants in the vicinity of power stations. Hence, the aim of the work was to analyze the properties of the feed coal, the combustion residues, and the topsoil which are reached by EE together with dust from power stations. The mineral and organic phases, which are the main hosts of EE, were identified by microscopy, X-ray powder diffraction, inductively coupled plasma atomic emission spectrometry, and scanning electron microscope with an energy dispersive X-ray methods. The highest content of elements was observed in the Oi and Oe subhorizons of the topsoil. Their hosts are various types of microspheres and char, emitted by power stations. In the areas of long-term industrial activity, there are also sharp-edged grains of magnetite emitted in the past by zinc, lead, and ironworks. The enrichment of the topsoil with these elements resulted in the increase in the content of EE, by between 0.2 times for Co; and 41.0 times for Cd in the roots of Scots pine, common oak and undergrowth, especially in the rhizodermis and the primary cortex and, more seldom, in the axle roller and cortex cells.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Shanjun Chen ◽  
Yan Chen ◽  
Huafeng Zhang ◽  
Yongjian Tang ◽  
Jianjun Wei ◽  
...  

A novel bulk synthesis method for preparing high pure Ti3Al nanoparticles was developed by flow-levitation method (FL). The Ti and Al vapours ascending from the high temperature levitated droplet were condensed by cryogenic Ar gas under atmospheric pressure. The morphology, crystalline structure, and chemical composition of Ti3Al nanoparticles were, respectively, investigated by transmission electron microscopy, X-ray diffraction, and inductively coupled plasma atomic emission spectrometry. The results indicated that the Ti3Al powders are nearly spherical-shaped, and the particle size ranges from several nanometers to 100 nm in diameter. Measurements of the d-spacing from X-ray (XRD) and electron diffraction studies confirmed that the Ti3Al nanoparticles have a hexagonal structure. A thin oxidation coating of 2-3 nm in thickness was formed around the particles after exposure to air. Based on the XPS measurements, the surface coating of the Ti3Al nanoparticles is a mixture of Al2O3and TiO2. The production rate of Ti3Al nanoparticles was estimated to be about 3 g/h. This method has a great potential in mass production of Ti3Al nanoparticles.


2013 ◽  
Vol 737 ◽  
pp. 145-152 ◽  
Author(s):  
Nurul Aini Edama ◽  
Alawi Sulaiman ◽  
Ku Halim Ku Hamid ◽  
Miradatul Najwa Mohd Rodhi ◽  
Mohibbah Musa ◽  
...  

This study was conducted to characterize Sg. Sayong clay so that it can be applied as a supporting material for the immobilization of biocatalyst in the bioconversion of wastewater into biofuel. The clay sample was physically and chemically characterized using Nitrogen Adsorption, X-Ray Diffraction (XRD), X-Ray Fluorescence (XRF), Fourier Transform Infrared Spectroscopy (FTIR), Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) and Field Emission Scanning Electron Microscopy (FESEM). The results obtained showed that the clay composed of SiO2 (57.4%), followed by Al2O3 (32.5%), K2O (4.9%), Fe2O3 (3.8%) and traces amount of Ca, Mg, Ma, and Ti. The results also showed the clay type was kaolinite with some presence of quartz, illite, montmorillonite and microcline. The clay was also successfully coated onto the wire-mesh and immobilized with biocatalyst for further bioconversion study.


Processes ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 754 ◽  
Author(s):  
Rijin Cheng ◽  
Hua Zhang ◽  
Hongwei Ni

In most cases, arsenic is an unfavorable element in metallurgical processes. The mechanism of arsenic removal was investigated through roasting experiments performed on arsenopyrite-bearing iron ore. Thermodynamic calculation of arsenic recovery was carried out by FactSage 7.0 software (Thermfact/CRCT, Montreal, Canada; GTT-Technologies, Ahern, Germany). Moreover, the arsenic residues in dust ash were recovered by roasting dust ash in a reducing atmosphere. Furthermore, the corresponding chemical properties of the roasted ore and dust ash were determined by X-ray diffraction, inductively coupled plasma atomic emission spectrometry, and scanning electron microscopy, coupled with energy-dispersive X-ray spectroscopy. The experimental results revealed that the arsenic in arsenopyrite-bearing iron ore can be removed in the form of As2O3(g) in an air or nitrogen atmosphere by a roasting method. The efficiency of arsenic removal through roasting in air was found to be less than that in nitrogen atmosphere. The method of roasting in a reducing atmosphere is feasible for arsenic recovery from dust ash. When the carbon mass ratio in dust ash is 1.83%, the arsenic removal products is almost volatilized and recovered in the form of As2O3(g).


Sign in / Sign up

Export Citation Format

Share Document