scholarly journals Petrogenesis of the Early Cretaceous Aolunhua Adakitic Monzogranite Porphyries, Southern Great Xing’an Range, NE China: Implication for Geodynamic Setting of Mo Mineralization

Minerals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 332
Author(s):  
Xiaohu He ◽  
Shucheng Tan ◽  
Zheng Liu ◽  
Zhongjie Bai ◽  
Xuance Wang ◽  
...  

This paper reports on whole-rock major- and trace-elemental and Sr–Nd isotopic compositions of the Aolunhua adakitic monzogranite porphyries from the Xilamulun district in the southern Great Xing’an Range, Northeast (NE) China. The high-K calc-alkaline Aolunhua monzogranite porphyries are characterized by high Sr/Y ratios (34.59–91.02), Sr (362–809 ppm), and low Y contents (7.66–10.5 ppm), respectively. These rocks also show slightly enriched Sr and Nd isotopes ((87Sr/86Sr)i = 0.7051–0.7058; εNd(t) = −2.98–0.92), with young two-stage model ages (T2DM = 0.84–1.16 Ga). Such a signature indicates that these rocks were most likely formed by partial melting of juvenile mafic lower crust. Based on equilibrium melting and batch-melting equations, we performed incompatible trace elements modeling. Low FeOT/(FeOT + MgO) values indirectly reflect these adakitic rocks were derived from an oxidizing source related to magnesian granitoids. The decreasing content of TiO2, Fe2O3, Nb/Ta ratio, and moderately negative Eu anomalies suggest that minimal fractionation of Fe–Ti oxides and plagioclase may have occurred in their evolutionary history. The result shows that the Aolunhua adakitic porphyries and coeval adakitic intrusive rocks in this area had not experienced extensive fractional crystallization and were derived from 20%–40% partial melting of lower continental crust, which was composed of ~25%–40% and 5%–20% garnet-bearing amphibolite, respectively. Integrating with rock assemblages and regional tectonic evolutionary history in this regime, high (Sm/Yb)SN (SN—source normalized data, normalized to mafic lower continental crust with Yb = 1.5 ppm and Sm/Yb = 1.87 for continental adakite) and low YbSN ratios suggest that these rocks were generated in an extensional environment related to lithospheric delamination without crustal thickening. The collision between North China and Siberian cratons around 160 Ma blocked the westward movement of the lithosphere as a result of the subduction of Pacific plate, which then led to lithospheric delamination induced by asthenospheric upwelling and underplating. Subsequently, partial melting of mafic lower crust caused by mantle upwelling resulted in the Early Cretaceous magmatic activities of adakitic rocks and associated Mo mineralization in the southern Great Xing’an Range.

2019 ◽  
Vol 132 (5-6) ◽  
pp. 1273-1290
Author(s):  
Haoyu Yan ◽  
Xiaoping Long ◽  
Jie Li ◽  
Qiang Wang ◽  
Xuan-Ce Wang ◽  
...  

Abstract Although postcollisional adakitic rocks are widely distributed in the southern Lhasa subterrane, their petrogenesis remains controversial. Complex petrogenesis models, mainly including partial melting of subducted oceanic crust, partial melting of the Indian lower continental crust, and magma mixing, are pivotal in reconstruction of the postcollisional dynamic processes in south Tibet. In order to constrain the geodynamic processes, we present systemic geochronological and geochemical data for newly discovered adakitic dikes in the Xigaze area, southern Lhasa subterrane. Based on the K2O and Na2O contents, the Xigaze dikes can be divided into K-rich and Na-rich dikes. Zircon U-Pb dating for the Xigaze K- and Na-rich dikes yielded ages of ca. 10.31 Ma and 14.78–12.75 Ma, respectively. The K-rich dikes show porphyritic texture and are characterized by high SiO2 (68.91–69.59 wt%) and K2O (5.53–5.68 wt%) contents and low Na2O/K2O (0.48–0.60) ratios, with Al2O3/(CaO + Na2O + K2O) (=A/CNK) ratios of 1.07–1.23. They have lower MgO (0.63–0.64 wt%), Mg# (37–39), and Cr (18.56–26.62 ppm) and Ni (4.37–4.62) contents. In addition, the K-rich dikes display enriched ([La/Yb]N = 65–68) light rare earth elements (LREEs), low concentrations of heavy rare earth elements (HREEs) and Y (e.g., Yb = 0.83–0.86 ppm; Y = 10.56–11.55 ppm), and high Sr (841–923 ppm), with high Sr/Y (74–84) ratios, indicating geochemical characteristics of typical adakitic rocks. Compared with the K-rich dikes, the Na-rich dikes also display porphyritic texture, but they have lower SiO2 (59.14–64.87 wt%) and K2O (1.98–3.25 wt%) contents, and higher Na2O (4.43–5.64 wt%) and MgO (1.40–3.08 wt%) contents, Mg# (46–59), and Cr (22.62–82.93 ppm) and Ni (8.91–39.76 ppm) contents. The HREE abundances (e.g., Yb = 0.36–0.81 ppm; Y = 5.30–10.56 ppm) of the Na-rich dikes are generally lower than the K-rich dikes. These Na-rich dikes are also characterized by adakitic geochemical features with high Sr/Y (60–223) but low (La/Yb)N (15–40) ratios. Both the K-rich and Na-rich dikes display distinct whole-rock-element geochemistry and Sr-Nd isotopic composition, with (87Sr/86Sr)i = 0.7121, εNd(t) = –8.62 to –8.11 and (87Sr/86Sr)i = 0.7054–0.7086, εNd(t) = –7.55 to –1.23 for K-rich and Na-rich dikes, respectively, which indicate different magma sources for the two types of dikes. The K-rich dikes were most likely derived from partial melts of Lhasa juvenile mafic lower crust with significant involvement of Indian continental crust compositions, whereas the Na-rich dikes were generated in the same way with less input of Indian continental crust compositions. Moreover, the postcollisional adakites in the southern Lhasa subterrane display distinctive spatial variations in geochemistry along the strike of this subterrane, indicating that the magma sources were heterogeneous. In combination with previously published data, we therefore suggest that all these late Oligocene to Miocene adakitic rocks were most likely generated dominantly by partial melting of the Lhasa mafic lower crust with involvement of Indian continental crust components, which was probably triggered by the tearing of the subducting Indian plate.


Lithos ◽  
2014 ◽  
Vol 202-203 ◽  
pp. 138-156 ◽  
Author(s):  
Zhen-Zhen Li ◽  
Ke-Zhang Qin ◽  
Guang-Ming Li ◽  
Shunso Ishihara ◽  
Lu-Ying Jin ◽  
...  

2021 ◽  
pp. 1-22
Author(s):  
Jia-Hao Jing ◽  
Hao Yang ◽  
Wen-Chun Ge ◽  
Yu Dong ◽  
Zheng Ji ◽  
...  

Abstract Late Mesozoic igneous rocks are important for deciphering the Mesozoic tectonic setting of NE China. In this paper, we present whole-rock geochemical data, zircon U–Pb ages and Lu–Hf isotope data for Early Cretaceous volcanic rocks from the Tulihe area of the northern Great Xing’an Range (GXR), with the aim of evaluating the petrogenesis and genetic relationships of these rocks, inferring crust–mantle interactions and better constraining extension-related geodynamic processes in the GXR. Zircon U–Pb ages indicate that the rhyolites and trachytic volcanic rocks formed during late Early Cretaceous time (c. 130–126 Ma). Geochemically, the highly fractionated I-type rhyolites exhibit high-K calc-alkaline, metaluminous to weakly peraluminous characteristics. They are enriched in light rare earth elements (LREEs) and large-ion lithophile elements (LILEs) but depleted in high-field-strength elements (HFSEs), with their magmatic zircons ϵHf(t) values ranging from +4.1 to +9.0. These features suggest that the rhyolites were derived from the partial melting of a dominantly juvenile, K-rich basaltic lower crust. The trachytic volcanic rocks are high-K calc-alkaline series and exhibit metaluminous characteristics. They have a wide range of zircon ϵHf(t) values (−17.8 to +12.9), indicating that these trachytic volcanic rocks originated from a dominantly lithospheric-mantle source with the involvement of asthenospheric mantle materials, and subsequently underwent extensive assimilation and fractional crystallization processes. Combining our results and the spatiotemporal migration of the late Early Cretaceous magmatic events, we propose that intense Early Cretaceous crust–mantle interaction took place within the northern GXR, and possibly the whole of NE China, and that it was related to the upwelling of asthenospheric mantle induced by rollback of the Palaeo-Pacific flat-subducting slab.


Sign in / Sign up

Export Citation Format

Share Document