scholarly journals Spontaneous Symmetry-Breaking in the Corrosion Transformation of Ancient Bronzes

Minerals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 656
Author(s):  
Yanpeng Yang ◽  
Xiaojuan Cao ◽  
Yang Li ◽  
Zhongchi Wang ◽  
Bingjie Li ◽  
...  

In general, during long-term museum conservation, ancient bronzes will generate new corrosion products also called the “secondary corrosion” on the surface of the unearthed “primary corrosion” products due to various environmental conditions. In this paper, the corrosion stages of several ancient Chinese bronzes are characterized by using optical microscope (OM), scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and Raman spectrometer (Raman). It is found that there exist phase transformation relationships in between the “primary corrosion” and the “secondary corrosion” stages (i.e., (1) the crystal lattice type tends to transform from a high symmetry system to a low symmetry system; (2) in case of the same crystal lattice type, the corrosions exhibit an inter-transformation or symbiosis). It is interesting to note that these transformation rules are very consistent with the well-known physical law of “spontaneous symmetry-breaking”, which won the 2008 Nobel Prize in Physics and also has been considered to be general law of nature, in addition to the principle of Gibbs free energy reduction. The significance of this discovery allows us to achieve the predictability and controllability of the bronze corrosion products (i.e., to predict the corrosive trends in advance and control the “second corrosion” by adjusting the conservation conditions. This research provides a novel conservation concept of ancient bronzes.

Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1577
Author(s):  
Isaac B. Bersuker

In a mostly review paper, we show that the important problem of symmetry, broken symmetry, and spontaneous broken symmetry of polyatomic systems is directly related to the Jahn–Teller (JT) and pseudo-Jahn–Teller (PJT) effects, including the hidden-JT and hidden-PJT effects, and these JT effects (JTEs) are the only source of spontaneous symmetry breaking in matter. They are directly related to the violation of the adiabatic approximation by the vibronic and other nonadiabatic couplings (jointly termed nonadiabaticity) in the interaction between the electrons and nuclei, which becomes significant in the presence of two or more degenerate or pseudodegenerate electronic states. In a generalization of this understanding of symmetry, we suggest an improved (quantum) definition of stereo-chemical polyatomic space configuration, in which, starting with their high-symmetry configuration, we separate all atomic systems into three distinguishable groups: (1) weak nonadiabaticity, stable high-symmetry configurations; (2) moderate-to-strong nonadiabaticity, unstable high-symmetry configurations, JTEs, spontaneous symmetry breaking (SSB); (3) very strong nonadiabaticity, stable distorted configurations. The JTEs, inherent to the second group of systems, produce a rich variety of novel properties, based on their multiminimum adiabatic potential energy surface (APES), leading to a short lifetime in the distorted configuration. We show the role of the Curie principle in the possibilities to observe the SSB in atomic matter, and mention briefly the revealed recently gamma of novel properties of matter in its interaction with external perturbation that occur due to the SSB, including ferroelectricity and orientational polarization, leading to enhanced permittivity and flexoelectricity.


2021 ◽  
pp. 100453
Author(s):  
Hetian Chen ◽  
Di Yi ◽  
Ben Xu ◽  
Jing Ma ◽  
Cewen Nan

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1358
Author(s):  
Yiannis Contoyiannis ◽  
Michael P. Hanias ◽  
Pericles Papadopoulos ◽  
Stavros G. Stavrinides ◽  
Myron Kampitakis ◽  
...  

This paper presents our study of the presence of the unstable critical point in spontaneous symmetry breaking (SSB) in the framework of Ginzburg–Landau (G-L) free energy. Through a 3D Ising spin lattice simulation, we found a zone of hysteresis where the unstable critical point continued to exist, despite the system having entered the broken symmetry phase. Within the hysteresis zone, the presence of the kink–antikink SSB solitons expands and, therefore, these can be observed. In scalar field theories, such as Higgs fields, the mass of this soliton inside the hysteresis zone could behave as a tachyon mass, namely as an imaginary quantity. Due to the fact that groups Ζ(2) and SU(2) belong to the same universality class, one expects that, in future experiments of ultra-relativistic nuclear collisions, in addition to the expected bosons condensations, structures of tachyon fields could appear.


1982 ◽  
Vol 25 (1) ◽  
pp. 311-318 ◽  
Author(s):  
G. M. Ribeiro ◽  
L. V. Gonzaga ◽  
A. S. Chaves ◽  
R. Gazzinelli ◽  
R. Blinc ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document