scholarly journals Seismic Random Noise Attenuation Using a Tied-Weights Autoencoder Neural Network

Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1089
Author(s):  
Huailai Zhou ◽  
Yangqin Guo ◽  
Ke Guo

Random noise is unavoidable in seismic data acquisition due to anthropogenic impacts or environmental influences. Therefore, random noise suppression is a fundamental procedure in seismic signal processing. Herein, a deep denoising convolutional autoencoder network based on self-supervised learning was developed herein to attenuate seismic random noise. Unlike conventional methods, our approach did not use synthetic clean data or denoising results as a training label to build the training and test sets. We directly used patches of raw noise data to establish the training set. Subsequently, we designed a robust deep convolutional neural network (CNN), which only depended on the input noise dataset to learn hidden features. The mean square error was then evaluated to establish the cost function. Additionally, tied weights were used to reduce the risk of over-fitting and improve the training speed to tune the network parameters. Finally, we denoised the target work area signals using the trained CNN network. The final denoising result was obtained after patch recombination and inverse operation. Results based on synthetic and real data indicated that the proposed method performs better than other novel denoising methods without loss of signal quality loss.

2020 ◽  
Vol 178 ◽  
pp. 104071
Author(s):  
Hui Song ◽  
Yang Gao ◽  
Wei Chen ◽  
Ya-juan Xue ◽  
Hua Zhang ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1269
Author(s):  
Jiabin Luo ◽  
Wentai Lei ◽  
Feifei Hou ◽  
Chenghao Wang ◽  
Qiang Ren ◽  
...  

Ground-penetrating radar (GPR), as a non-invasive instrument, has been widely used in civil engineering. In GPR B-scan images, there may exist random noise due to the influence of the environment and equipment hardware, which complicates the interpretability of the useful information. Many methods have been proposed to eliminate or suppress the random noise. However, the existing methods have an unsatisfactory denoising effect when the image is severely contaminated by random noise. This paper proposes a multi-scale convolutional autoencoder (MCAE) to denoise GPR data. At the same time, to solve the problem of training dataset insufficiency, we designed the data augmentation strategy, Wasserstein generative adversarial network (WGAN), to increase the training dataset of MCAE. Experimental results conducted on both simulated, generated, and field datasets demonstrated that the proposed scheme has promising performance for image denoising. In terms of three indexes: the peak signal-to-noise ratio (PSNR), the time cost, and the structural similarity index (SSIM), the proposed scheme can achieve better performance of random noise suppression compared with the state-of-the-art competing methods (e.g., CAE, BM3D, WNNM).


Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. A45-A51 ◽  
Author(s):  
Chao Zhang ◽  
Mirko van der Baan

The low-magnitude microseismic signals generated by fracture initiation are generally buried in strong background noise, which complicates their interpretation. Thus, noise suppression is a significant step. We have developed an effective multicomponent, multidimensional microseismic-data denoising method by conducting a simplified polarization analysis in the 3D shearlet transform domain. The 3D shearlet transform is very competitive in dealing with multidimensional data because it captures details of signals at different scales and orientations, which benefits signal and noise separation. We have developed a novel processing strategy based on a signal-detection operator that can effectively identify signal coefficients in the shearlet domain by taking the correlation and energy distribution of 3C microseismic signals into account. We perform tests on synthetic and real data sets and determine that the proposed method can effectively remove random noise and preserve weak signals.


Geophysics ◽  
2016 ◽  
Vol 81 (2) ◽  
pp. V117-V124 ◽  
Author(s):  
Mohammad Amir Nazari Siahsar ◽  
Saman Gholtashi ◽  
Amin Roshandel Kahoo ◽  
Hosein Marvi ◽  
Alireza Ahmadifard

Attenuation of random noise is a major concern in seismic data processing. This kind of noise is usually characterized by random oscillation in seismic data over the entire time and frequency. We introduced and evaluated a low-rank and sparse decomposition-based method for seismic random noise attenuation. The proposed method, which is a trace by trace algorithm, starts by transforming the seismic signal into a new sparse subspace using the synchrosqueezing transform. Then, the sparse time-frequency representation (TFR) matrix is decomposed into two parts: (a) a low-rank component and (b) a sparse component using bilateral random projection. Although seismic data are not exactly low-rank in the sparse TFR domain, they can be assumed as being of semi-low-rank or approximately low-rank type. Hence, we can recover the denoised seismic signal by minimizing the mixed [Formula: see text] norms’ objective function by considering the intrinsically semilow-rank property of the seismic data and sparsity feature of random noise in the sparse TFR domain. The proposed method was tested on synthetic and real data. In the synthetic case, the data were contaminated by random noise. Denoising was carried out by means of the [Formula: see text] classical singular spectrum analysis (SSA) and [Formula: see text] deconvolution method for comparison. The [Formula: see text] deconvolution and the classical [Formula: see text] SSA method failed to properly reduce the noise and to recover the desired signal. We have also tested the proposed method on a prestack real data set from an oil field in the southwest of Iran. Through synthetic and real tests, the proposed method is determined to be an effective, amplitude preserving, and robust tool that gives superior results over classical [Formula: see text] SSA as conventional algorithm for denoising seismic data.


Author(s):  
P.L. Nikolaev

This article deals with method of binary classification of images with small text on them Classification is based on the fact that the text can have 2 directions – it can be positioned horizontally and read from left to right or it can be turned 180 degrees so the image must be rotated to read the sign. This type of text can be found on the covers of a variety of books, so in case of recognizing the covers, it is necessary first to determine the direction of the text before we will directly recognize it. The article suggests the development of a deep neural network for determination of the text position in the context of book covers recognizing. The results of training and testing of a convolutional neural network on synthetic data as well as the examples of the network functioning on the real data are presented.


2019 ◽  
Vol 14 (7) ◽  
pp. 628-639 ◽  
Author(s):  
Bizhi Wu ◽  
Hangxiao Zhang ◽  
Limei Lin ◽  
Huiyuan Wang ◽  
Yubang Gao ◽  
...  

Background: The BLAST (Basic Local Alignment Search Tool) algorithm has been widely used for sequence similarity searching. Analogously, the public phenotype images must be efficiently retrieved using biological images as queries and identify the phenotype with high similarity. Due to the accumulation of genotype-phenotype-mapping data, a system of searching for similar phenotypes is not available due to the bottleneck of image processing. Objective: In this study, we focus on the identification of similar query phenotypic images by searching the biological phenotype database, including information about loss-of-function and gain-of-function. Methods: We propose a deep convolutional autoencoder architecture to segment the biological phenotypic images and develop a phenotype retrieval system to enable a better understanding of genotype–phenotype correlation. Results: This study shows how deep convolutional autoencoder architecture can be trained on images from biological phenotypes to achieve state-of-the-art performance in a phenotypic images retrieval system. Conclusion: Taken together, the phenotype analysis system can provide further information on the correlation between genotype and phenotype. Additionally, it is obvious that the neural network model of image segmentation and the phenotype retrieval system is equally suitable for any species, which has enough phenotype images to train the neural network.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 766
Author(s):  
Rashad A. R. Bantan ◽  
Ramadan A. Zeineldin ◽  
Farrukh Jamal ◽  
Christophe Chesneau

Deanship of scientific research established by the King Abdulaziz University provides some research programs for its staff and researchers and encourages them to submit proposals in this regard. Distinct research study (DRS) is one of these programs. It is available all the year and the King Abdulaziz University (KAU) staff can submit more than one proposal at the same time up to three proposals. The rules of the DSR program are simple and easy so it contributes in increasing the international rank of KAU. The authors are offered financial and moral reward after publishing articles from these proposals in Thomson-ISI journals. In this paper, multiplayer perceptron (MLP) artificial neural network (ANN) is employed to determine the factors that have more effect on the number of ISI published articles. The proposed study used real data of the finished projects from 2011 to April 2019.


Sign in / Sign up

Export Citation Format

Share Document