scholarly journals Platinum-Group Mineral Occurrences and Platinum-Group Elemental Geochemistry of the Xiadong Alaskan-Type Complex in the Southern Central Asian Orogenic Belt

Minerals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 494 ◽  
Author(s):  
Sai-Hong Yang ◽  
Ben-Xun Su ◽  
Xiao-Wen Huang ◽  
Dong-Mei Tang ◽  
Ke-Zhang Qin ◽  
...  

Alaskan-type complexes commonly contain primary platinum-group element (PGE) alloys and lack base-metal sulfides in their dunite and chromite-bearing rocks. They could therefore host PGE deposits with rare sulfide mineralization. A detailed scanning electron microscope investigation on dunites from the Xiadong Alaskan-type complex in the southern Central Asian Orogenic Belt revealed: various occurrences of platinum-group minerals (PGMs) that are dominated by inclusions in chromite grains containing abundant Ru, Os, S and a small amount of Pd and Te, indicating that they mainly formed prior to or simultaneously with the crystallization of the host minerals; A few Os–Ir–Rurich phases with iridium/platinum-group element (IPGE) alloy, anduoite (Ru,Ir,Ni)(As,S)2−x and irarsite (IrAsS) were observed in chromite fractures, and as laurite (RuS2) in clinopyroxene, which was likely related to late-stage hydrothermal alteration. The rocks in the Xiadong complex display large PGE variations with ∑PGE of 0.38–112 ppb. The dunite has the highest PGE concentrations (8.69–112 ppb), which is consistent with the presence of PGMs. Hornblende clinopyroxenite, hornblendite and hornblende gabbro were all depleted in PGEs, indicating that PGMs were likely already present at an early phase of magma and were mostly collected afterward in dunites during magma differentiation. Compared with the regional mafic–ultramafic intrusions in Eastern Tianshan, the Xiadong complex show overall higher average PGE concentration. This is consistent with the positive PGE anomalies revealed by regional geochemical surveys. The Xiadong complex, therefore, has potential for PGE exploration.

2020 ◽  
Author(s):  
Hai Zhou ◽  
Guochun Zhao ◽  
et al.

Table S1: Summary of the samples and sampling positions in this study (sampling sites are marked in Fig. 3); Table S2: U-Pb age data for zircons of (meta-)sedimentary and volcanic rocks in this study; Table S3: Lu-Hf isotopic data for zircons of (meta-)sedimentary and volcanic rocks in this study.


Author(s):  
Yujian Wang ◽  
Dicheng Zhu ◽  
Chengfa Lin ◽  
Fangyang Hu ◽  
Jingao Liu

Accretionary orogens function as major sites for the generation of continental crust, but the growth model of continental crust remains poorly constrained. The Central Asian Orogenic Belt, as one of the most important Phanerozoic accretionary orogens on Earth, has been the focus of debates regarding the proportion of juvenile crust present. Using published geochemical and zircon Hf-O isotopic data sets for three belts in the Eastern Tianshan terrane of the southern Central Asian Orogenic Belt, we first explore the variations in crustal thickness and isotopic composition in response to tectono-magmatic activity over time. Steady progression to radiogenic zircon Hf isotopic signatures associated with syn-collisional crustal thickening indicates enhanced input of mantle-derived material, which greatly contributes to the growth of the continental crust. Using the surface areas and relative increases in crustal thickness as the proxies for magma volumes, in conjunction with the calculated mantle fraction of the mixing flux, we then are able to determine that a volume of ∼14−22% of juvenile crust formed in the southern Central Asian Orogenic Belt during the Phanerozoic. This study highlights the validity of using crustal thickness and zircon isotopic signatures of magmatic rocks to quantify the volume of juvenile crust in complex accretionary orogens. With reference to the crustal growth pattern in other accretionary orogens and the Nd-Hf isotopic record at the global scale, our work reconciles the rapid crustal growth in the accretionary orogens with its episodic generation pattern in the formation of global continental crust.


2021 ◽  
Vol 59 (6) ◽  
pp. 1339-1362
Author(s):  
Malose M. Langa ◽  
Pedro J. Jugo ◽  
Matthew I. Leybourne ◽  
Danie F. Grobler

ABSTRACT The UG-2 chromitite layer, with its elevated platinum-group element content, is a key marker horizon in the eastern and western limbs of the Bushveld Igneous Complex and the largest platinum-group element chromite-hosted resource of its kind in the world. In contrast, much less is known about its stratigraphic equivalent in the northern limb, the “UG-2 equivalent” (UG-2E) chromitite. Recent studies on chromite mineral chemistry show similarities between the UG-2 and sections of the UG-2E, but also that the UG-2E was partially contaminated by assimilation of local metasedimentary rocks. Here, we provide a detailed characterization of sulfide minerals and platinum-group minerals in a suite of samples from the UG-2E and compare the results with data obtained from a reference suite of samples from the UG-2. Results from petrographic observations, electron probe microanalysis, laser ablation-inductively coupled plasma-mass spectrometry, quantitative evaluation of materials by scanning electron microscopy, and δ34S isotopes show that: (1) sulfide minerals in the UG-2E and UG-2 consist mainly of pentlandite-chalcopyrite-pyrrhotite, but pyrrhotite is significantly more abundant in the UG-2E and almost absent in the UG-2; (2) iron contents in pentlandite from the UG-2E are significantly higher than in the UG-2; (3) platinum-group element contents within sulfide minerals are different between the two chromitites; (4) UG-2E platinum-group minerals are dominated by arsenides and bismuthotellurides, and by alloys and platinum-group element-sulfide minerals in the UG-2; (5) sulfide mineral chemistry and δ34S values indicate some crustal contamination of the UG-2E; and (6) sulfide mineral and secondary silicate mineral textures in both the UG-2E and UG-2 are indicative of minor, millimeter- to centimeter-scale, hydrothermal alteration. From our observations and results, we consider the UG-2E chromitite in the northern limb to be the equivalent to the UG-2 in the eastern and western limbs that has been contaminated by assimilation of Transvaal Supergroup footwall rocks during emplacement. The contamination resulted in UG-2E sulfide mineral elemental contents and platinum-group mineral types and abundances that are distinct from those of the UG-2 in the rest of the Bushveld.


2017 ◽  
Vol 130 (3-4) ◽  
pp. 537-557 ◽  
Author(s):  
Nathan R. Cleven ◽  
Shoufa Lin ◽  
Wenjiao Xiao ◽  
Donald W. Davis ◽  
Bill Davis

Sign in / Sign up

Export Citation Format

Share Document