scholarly journals Halogen and Hydrogen Bonding Interplay in the Crystal Packing of Halometallocenes

Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2959 ◽  
Author(s):  
Karina Shimizu ◽  
João Ferreira da Silva

This paper focuses in the influence of halogen atoms in the design and structural control of the crystal packing of Group VIII halogenated metallocenes. The study is based on the present knowledge on new types of intermolecular contacts such as halogen (X⋯X, C-X⋯H, C-X⋯π), π⋯π, and C-H⋯π interactions. The presence of novel C-H⋯M interactions is also discussed. Crystal packings are analysed after database search on this family of compounds. Results are supported by ab initio calculations on electrostatic charge distributions; Hirshfeld analysis is also used to predict the types of contacts to be expected in the molecules. Special attention is given to the competition among hydrogen and halogen interactions, mainly its influence on the nature and geometric orientations of the different supramolecular motifs. Supramolecular arrangements of halogenated metallocenes and Group IV di-halogenated bent metallocenes are also compared and discussed. Analysis supports halogen bonds as the predominant interactions in defining the crystal packing of bromine and iodine 1,1′-halometallocenes.

Author(s):  
Irina S. Konovalova ◽  
Svitlana V. Shishkina ◽  
Dmytro Kobzev ◽  
Olha Semenova ◽  
Anatoliy Tatarets

4,6-Dibromo-2,3,3-trimethyl-3H-indole, C11H11Br2N, exists as a neutral molecule in the asymmetric unit. The asymmetric unit of 4,6-dibromo-2,3,3-trimethyl-3H-indol-1-ium iodide, C12H14Br2N+·I−, contains one organic cation and one iodine anion. The positive charge is localized on the quaternized nitrogen atom. In the crystal, molecules of 4,6-dibromoindolenine are linked by C—Br...π halogen bonds, forming zigzag chains propagating in the [001] direction. The molecules of the salt form layers parallel to the (010) plane where they are linked by C—H...Br hydrogen bonds, C—Br...Br and C—Br...I halogen bonds. The Hirshfeld surface analysis and two dimensional fingerprint plots were used to analyse the intermolecular contacts present in both crystals.


Compounds ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 58-74
Author(s):  
Emmanuel Aubert ◽  
Emmanuel Wenger ◽  
Paola Peluso ◽  
Victor Mamane

Non-symmetrical chiral 4,4′-bipyridines have recently found interest in organocatalysis and medicinal chemistry. In this regard, the development of efficient methods for their synthesis is highly desirable. Herein, a series of non-symmetrical atropisomeric polyhalogenated 4,4′-bipyridines were prepared and further functionalized by using cross-coupling reactions. The desymmetrization step is based on the N-oxidation of one of the two pyridine rings of the 4,4′-bipyridine skeleton. The main advantage of this methodology is the possible post-functionalization of the pyridine N-oxide, allowing selective introduction of chlorine, bromine or cyano groups in 2- and 2′-postions of the chiral atropisomeric 4,4′-bipyridines. The crystal packing in the solid state of some newly prepared derivatives was analyzed and revealed the importance of halogen bonds in intermolecular interactions.


2018 ◽  
Vol 74 (11) ◽  
pp. 1427-1433 ◽  
Author(s):  
Ewa Żesławska ◽  
Wojciech Nitek ◽  
Waldemar Tejchman ◽  
Jadwiga Handzlik

The arylidene–imidazolone derivatives are a group of compounds of great interest in medicinal chemistry due to their various pharmacological actions. In order to study the possible conformations of an arylidene–imidazolone derivative, two new crystal structures were determined by X-ray diffraction, namely (Z)-5-(4-chlorobenzylidene)-2-(4-methylpiperazin-1-yl)-3H-imidazol-5(4H)-one, C15H17ClN4O, (6), and its salt 4-[5-(4-chlorobenzylidene)-5-oxo-4,5-dihydro-3H-imidazol-2-yl]-1-methylpiperazin-1-ium 3-{5-[4-(diethylamino)benzylidene]-4-oxo-2-thioxothiazolidin-3-yl}propionate, C15H18ClN4O+·C17H19N2O3S2 −, (7). Both compounds crystallize in the space group P\overline{1}. The basic form (6) crystallizes with two molecules in the asymmetric unit. In the acid form of (6), the N atom of the piperazine ring is protonated by proton transfer from the carboxyl group of the rhodanine acid derivative. The greatest difference in the conformations of (6) and its protonated form, (6c), is observed in the location of the arylidene–imidazolone substituent at the N atom. In the case of (6c), the position of this substituent is close to axial, while for (6), the corresponding position is intermediate between equatorial and axial. The crystal packing is dominated by a network of N—H...O hydrogen bonds. Furthermore, the crystal structures are stabilized by numerous intermolecular contacts of types C—H...N and C—H...Cl in (6), and C—H...O and C—H...S in (7). The geometry with respect to the location of the substituents at the N atoms of the piperazine ring was compared with other crystal structures possessing an N-methylpiperazine moiety.


2019 ◽  
Vol 234 (3) ◽  
pp. 155-164 ◽  
Author(s):  
Mikhail A. Kinzhalov ◽  
Sergey V. Baykov ◽  
Alexander S. Novikov ◽  
Matti Haukka ◽  
Vadim P. Boyarskiy

Abstract The reaction of bis(isocyanide)palladium complex cis-[PdCl2(CNXyl)2] (Xyl=2,6-Me2C6H3) with excess of 4,5-dichlorobenzene-1,2-amine in a C2H4Cl2/MeOH mixture affords monocationic bis(diaminocarbene) complex cis-[PdClC{(NHXyl)=NHC6H2Cl2NH2}{C(NHXyl)=NHC6H2Cl2NH2}]Cl (3) in moderate yield (42%). Complex 3 exists in the solid phase in the H-bonded dimeric associate of two single charged organometallic cations and two chloride anions according to X-ray diffraction data. The Hirshfeld surface analysis for the X-ray structure of 3 reveals that the crystal packing is determined primarily by intermolecular contacts H–Cl, H–H, and H–C. The intermolecular hydrogen bonds N–H···Cl and C–H···Cl in the H-bonded dimeric associate of 3 were studied by DFT calculations and topological analysis of the electron density distribution within the framework of QTAIM method, and estimated energies of these supramolecular contacts vary from 1.6 to 9.1 kcal/mol. Such non-covalent bonding means that complex 3 is an anionic receptor for the chloride anions.


2012 ◽  
Vol 27 (2) ◽  
pp. 185-192 ◽  
Author(s):  
Conceição Aparecida Dornelas ◽  
Francisco Vagnaldo Fechine-Jamacaru ◽  
Irineu Lima Albuquerque ◽  
Hemerson Iury Ferreira Magalhães ◽  
Adjair Jairo Silva de Souza ◽  
...  

PURPOSE: To determine the effects of green propolis extracted in L-lysine (WSDP) and of L- lysine for 40 weeks on induced rat bladder carcinogenesis. METHODS: The animals (groups I, II, III, IV, V and VI) received BBN during 14 weeks. Group I was treated with propolis 30 days prior received BBN, and then these animals were treated daily with propolis; Groups II and III was treated with subcutaneous and oral propolis (respectively) concurrently with BBN. The animals of Group IV were treated L-lysine; Group V received water subcutaneous; and Group VI received only to BBN. Among the animals not submitted to carcinogenesis induction, Group VII received propolis, Group VIII received L-lysine and Group IX received water. RESULTS: The carcinoma incidence in Group I was lower than that of control (Group VI). The carcinoma multiplicity in Group IV was greater than in Group VI. All animals treated with L-lysine developed carcinomas, and they were also more invasive in Group IV than in controls. On the other hand, Group VIII showed no bladder lesions. CONCLUSION: The WSDP is chemopreventive against rat bladder carcinogenesis, if administered 30 days prior to BBN , and that L-lysine causes promotion of bladder carcinogenesis.


Author(s):  
Berislav Perić ◽  
Janja Makarević ◽  
Milan Jokić ◽  
Biserka Kojić-Prodić ◽  
Mladen Žinić

2017 ◽  
Vol 73 (11) ◽  
pp. 1716-1720 ◽  
Author(s):  
Julio Zukerman-Schpector ◽  
Sofia Dallasta Pedroso ◽  
Lucas Sousa Madureira ◽  
Márcio Weber Paixão ◽  
Akbar Ali ◽  
...  

The molecule in the title compound, C15H12N4O2, has a twistedL-shape with the dihedral angle between the aromatic rings of the N-bound benzene and C-bound benzyl groups being 70.60 (9)°. The nitro group is co-planar with the benzene ring to which it is connected [C—C—N—O torsion angle = 0.4 (3)°]. The three-dimensional packing is stabilized by a combination of methylene-C—H...O(nitro), methylene-C—H...π(phenyl), phenyl-C—H...π(triazolyl) and nitro-O...π(nitrobenzene) interactions, along with weak π(triazolyl)–π(nitrobenzene) contacts [inter-centroid distance = 3.8386 (10) Å]. The importance of the specified intermolecular contacts has been verified by an analysis of the calculated Hirshfeld surface.


Author(s):  
Ana Paula Lopes de Melo ◽  
Leandro Bresolin ◽  
Bianca Barreto Martins ◽  
Vanessa Carratu Gervini ◽  
Adriano Bof de Oliveira

The reaction in methanol of CuII acetate monohydrate with 5-fluoroisatin 3-oxime deprotonated with KOH in a 1:2 molar ratio and recrystallization from pyridine yielded the title compound, [Cu(C8H4FN2O2)2(C5H5N)2]. In the centrosymmetric complex, the anionic form of the isatin oxime acts as a κ2 N,O donor, building five-membered metallarings. The CuII cation is sixfold coordinated in a slightly distorted octahedral environment by two trans, equatorial, anionic isatin derivatives and two trans pyridine ligands in axial positions. The complexes are linked by hydrogen bonding into a three-dimensional network, which is also stabilized by π–π stacking interactions [centroid-to-centroid distance = 3.7352 (9) Å] and C—H...π contacts. The Hirshfeld surface analysis indicates that the major contributions for the crystal packing are H...H (31.80%), H...C (24.30%), H...O (15.20%) and H...F (10.80%). This work is the second report in the literature of a crystal structure of a coordination compound with isatin 3-oxime ligands (coordination chemistry).


Sign in / Sign up

Export Citation Format

Share Document