scholarly journals New Poly(Ionic Liquid) Based Fiber for Determination of Oxytetracycline in Milk Samples by Application of SPME-CE Technique

Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 430 ◽  
Author(s):  
T. Alexandra Ferreira ◽  
J. Francisco Flores-Aguilar ◽  
Eva M. Santos ◽  
Jose A. Rodriguez ◽  
Israel S. Ibarra

In this work, a procedure using solid phase microextraction in combination with capillary electrophoresis was developed for the determination of oxytetracycline in milk samples. The method involves the synthesis of poly(1-allyl-3-methyl imidazolium) chloride film on a stainless-steel bar via electropolymerization and its use as an adsorbent for oxytetracycline (OT) by an ionic exchange mechanism. The coated fiber is then immersed in milk samples for retention of oxytetracycline residues, followed by elution, drying, and reconstitution before analysis with capillary electrophoresis. The proposed method achieves a limit of detection of 70 µg L–1 with adequate precision and uncertainty, making this methodology appropriate for the determination of OT in milk samples. The method was applied to the pre-concentration and quantification of oxytetracycline in ten commercial milk samples. Two tested samples were positive for the presence of oxytetracycline but the concentration was below the maximum residue limit according to the international normative standard. The proposed methodology was evaluated according to the Eco-Scale approach, and the total score of 51 indicated that the methodology proposed is both green and acceptable despite the multi-stage character. SPME-CE methodology allows us to perform the sample pre-treatment and determination of OT in an effective and greener way, decreasing the number of steps during the analysis and the generation of waste.

2016 ◽  
Vol 39 (14) ◽  
pp. 658-665 ◽  
Author(s):  
Gabriela Islas ◽  
José A. Rodríguez ◽  
M. Elena Páez-Hernández ◽  
Silvia Corona-Avendaño ◽  
Alberto Rojas-Hernández ◽  
...  

2012 ◽  
Vol 33 (13) ◽  
pp. 2041-2048 ◽  
Author(s):  
Israel S. Ibarra ◽  
Jose A. Rodriguez ◽  
Ma. Elena Páez-Hernández ◽  
Eva M. Santos ◽  
Jose M. Miranda

Author(s):  
Ying PENG ◽  
Huan HE ◽  
Cheng SUN ◽  
Ya-Ling ZHANG ◽  
Wen-Chao LI ◽  
...  

2016 ◽  
Vol 190 ◽  
pp. 263-269 ◽  
Author(s):  
Rosa M. Peña Crecente ◽  
Carlha Gutiérrez Lovera ◽  
Julia Barciela García ◽  
Carlos Herrero Latorre ◽  
Sagrario García Martín

Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1837
Author(s):  
Harischandra Naik Rathod ◽  
Bheemanna Mallappa ◽  
Pallavi Malenahalli Sidramappa ◽  
Chandra Sekhara Reddy Vennapusa ◽  
Pavankumar Kamin ◽  
...  

A quick, sensitive, and reproducible analytical method for the determination of 77 multiclass pesticides and their metabolites in Capsicum and tomato by gas and liquid chromatography tandem mass spectrometry was standardized and validated. The limit of detection of 0.19 to 10.91 and limit of quantification of 0.63 to 36.34 µg·kg−1 for Capsicum and 0.10 to 9.55 µg·kg−1 (LOD) and 0.35 to 33.43 µg·kg−1 (LOQ) for tomato. The method involves extraction of sample with acetonitrile, purification by dispersive solid phase extraction using primary secondary amine and graphitized carbon black. The recoveries of all pesticides were in the range of 75 to 110% with a relative standard deviation of less than 20%. Similarly, the method precision was evaluated interms of repeatability (RSDr) and reproducibility (RSDwR) by spiking of mixed pesticides standards at 100 µg·kg−1 recorded anRSD of less than 20%. The matrix effect was acceptable and no significant variation was observed in both the matrices except for few pesticides. The estimated measurement uncertainty found acceptable for all the pesticides. This method found suitable for analysis of vegetable samples drawn from market and farm gates.


2020 ◽  
Vol 42 (1) ◽  
pp. 31-31
Author(s):  
Malik H Alaloosh Alamri Malik H Alaloosh Alamri ◽  
Sadeem Subhi Abed and Abdulkareem M A Alsammarraie Sadeem Subhi Abed and Abdulkareem M A Alsammarraie

Bendiocarb (BEN) is an acutely toxic carbamate insecticide which used in public places and agriculture, it is also effective against a wide range of nuisance and disease vector insects. A new rapid and sensitive reverse flow injection spectrophotometric procedure coupled with on-line solid-phase reactor is designed in this article for the determination of BEN in its insecticidal formulations and water samples, by using three different solid-phase reactors containing bulk PbO2 (B-SPR), PbO2 nanoparticles (N-SPR) and grafted nanoparticles of SiO2-PbO2 (G-SPR) immobilized on cellulose acetate matrix (CA). This method of oxidative coupling is based on alkaline hydrolysis of the BEN pesticide, and then coupled with N,N dimethyl-p-phenylenediamine sulphate (DMPD) to give a blue color product which measured at λmax 675 nm. It worth to mentioned that under optimal conditions, Beer’s law is obeyed in the range of 1-175 μg mL-1 for B-SPR and 0.25-70 μg mL-1 of BEN for both N-SPR and G-SPR respectively within limit of detection (LOD) of 0.931, 0.234 and 0.210 μg mL-1 for B-SPR N-SPR and G-SPR respectively. The surface methodology of the solid phase was also investigated by using atomic force microscopy.


Sign in / Sign up

Export Citation Format

Share Document