scholarly journals Optimization of the Electro-Peroxone Process for Micropollutant Abatement Using Chemical Kinetic Approaches

Molecules ◽  
2019 ◽  
Vol 24 (14) ◽  
pp. 2638 ◽  
Author(s):  
Huijiao Wang ◽  
Lu Su ◽  
Shuai Zhu ◽  
Wei Zhu ◽  
Xia Han ◽  
...  

The electro-peroxone (E-peroxone) process is an emerging electrocatalytic ozonation process that is enabled by in situ producing hydrogen peroxide (H2O2) from cathodic oxygen reduction during ozonation. The in situ-generated H2O2 can then promote ozone (O3) transformation to hydroxyl radicals (•OH), and thus enhance the abatement of ozone-refractory pollutants compared to conventional ozonation. In this study, a chemical kinetic model was employed to simulate micropollutant abatement during the E-peroxone treatment of various water matrices (surface water, secondary wastewater effluent, and groundwater). Results show that by following the O3 and •OH exposures during the E-peroxone process, the abatement kinetics of a variety of model micropollutants could be well predicted using the model. In addition, the effect of specific ozone doses on micropollutant abatement efficiencies could be quantitatively evaluated using the model. Therefore, the chemical kinetic model can be used to reveal important information for the design and optimization of the treatment time and ozone doses of the E-peroxone process for cost-effective micropollutant abatement in water and wastewater treatment.

Author(s):  
Milad Narimani ◽  
Gabriel da Silva

Vitamin E acetate (VEA) is strongly linked to the outbreak of electronic-cigarette or vaping product use-associated lung injury (EVALI). It has been proposed that VEA decomposition to ketene – a respiratory poison that damages lungs at low ppm levels – may play a role in EVALI. However, there is no information available on the temperature at which VEA decomposes and how this correlates with the vaping process. We have studied the temperature-dependent kinetics of VEA decomposition using quantum chemical and statistical mechanical techniques, developing a chemical kinetic model of the vaping process. This model predicts that, under typical vaping conditions, the use of VEA contaminated e-cigarette products is unlikely to produce ketene at harmful levels. However, at the high temperatures encountered at low e-cigarette product levels, which produce “dry hits”, ketene concentrations are predicted to reach acutely toxic levels in the lungs (as high as 30 ppm). We therefore hypothesize that dry hit vaping of e-cigarette products containing VEA contributes to EVALI.


2020 ◽  
Author(s):  
Milad Narimani ◽  
Gabriel da Silva

Vitamin E acetate (VEA) is strongly linked to the outbreak of electronic-cigarette or vaping product use-associated lung injury (EVALI). It has been proposed that VEA decomposition to ketene – a respiratory poison that damages lungs at low ppm levels – may play a role in EVALI. However, there is no information available on the temperature at which VEA decomposes and how this correlates with the vaping process. We have studied the temperature-dependent kinetics of VEA decomposition using quantum chemical and statistical mechanical techniques, developing a chemical kinetic model of the vaping process. This model predicts that, under typical vaping conditions, the use of VEA contaminated e-cigarette products is unlikely to produce ketene at harmful levels. However, at the high temperatures encountered at low e-cigarette product levels, which produce “dry hits”, ketene concentrations are predicted to reach acutely toxic levels in the lungs (as high as 30 ppm). We therefore hypothesize that dry hit vaping of e-cigarette products containing VEA contributes to EVALI.


1987 ◽  
Vol 122 ◽  
pp. 551-552
Author(s):  
L.A.M. Nejad ◽  
T. J. Millar

We have developed a time-dependent chemical kinetic model to describe the chemistry in the circumstellar envelopes of cool stars, with particular reference to IRC + 10216. Our detailed calculations show that ion-molecule reactions are important in the formation of many of the species observed in IRC + 10216.


2021 ◽  
Vol 13 (8) ◽  
pp. 4246
Author(s):  
Shih-Wei Yen ◽  
Wei-Hsin Chen ◽  
Jo-Shu Chang ◽  
Chun-Fong Eng ◽  
Salman Raza Naqvi ◽  
...  

This study investigated the kinetics of isothermal torrefaction of sorghum distilled residue (SDR), the main byproduct of the sorghum liquor-making process. The samples chosen were torrefied isothermally at five different temperatures under a nitrogen atmosphere in a thermogravimetric analyzer. Afterward, two different kinetic methods, the traditional model-free approach, and a two-step parallel reaction (TPR) kinetic model, were used to obtain the torrefaction kinetics of SDR. With the acquired 92–97% fit quality, which is the degree of similarity between calculated and real torrefaction curves, the traditional method approached using the Arrhenius equation showed a poor ability on kinetics prediction, whereas the TPR kinetic model optimized by the particle swarm optimization (PSO) algorithm showed that all the fit qualities are as high as 99%. The results suggest that PSO can simulate the actual torrefaction kinetics more accurately than the traditional kinetics approach. Moreover, the PSO method can be further employed for simulating the weight changes of reaction intermediates throughout the process. This computational method could be used as a powerful tool for industrial design and optimization in the biochar manufacturing process.


Sign in / Sign up

Export Citation Format

Share Document