scholarly journals Performance of Electrochemical Processes in the Treatment of Reverse Osmosis Concentrates of Sanitary Landfill Leachate

Molecules ◽  
2019 ◽  
Vol 24 (16) ◽  
pp. 2905 ◽  
Author(s):  
Annabel Fernandes ◽  
Oumaima Chamem ◽  
Maria José Pacheco ◽  
Lurdes Ciríaco ◽  
Moncef Zairi ◽  
...  

Electrochemical technologies have been broadly applied in wastewaters treatment, but few studies have focused on comparing the performance of the different electrochemical processes, especially when used to treat highly-polluted streams. The electrochemical treatment of a reverse osmosis concentrate of sanitary landfill leachate was performed by means of electrocoagulation (EC), anodic oxidation (AO) and electro-Fenton (EF) processes, and the use of different electrode materials and experimental conditions was assessed. All the studied processes and experimental conditions were effective in organic load removal. The results obtained showed that EC, with stainless steel electrodes, is the cheapest process, although it presents the disadvantage of sludge formation with high iron content. At high applied current intensity, AO presents the best treatment time/energy consumption ratio, especially if the samples’ initial pH is corrected to 3. However, pH correction from natural to 3 deeply decreases nitrogen-containing compounds’ removal. For longer treatment time, the EF process with a carbon-felt cathode and a BDD anode, performed at natural iron content and low applied current intensity, is the most favorable solution.

Author(s):  
Francisco H. Nunes Júnior ◽  
Franklin A. Gondim ◽  
Magnum de S. Pereira ◽  
Brennda B. Braga ◽  
Roberto A. Pontes Filho ◽  
...  

ABSTRACT The aim of this study was to evaluate the initial growth of sunflower seedlings under different concentrations of sanitary landfill leachate, considering the feasibility of its use as source of nutrients for agricultural production. Biometric and vigor variables were analyzed through the measurements of collar diameter, shoot height, number of leaves and shoot and root fresh and dry matters, from January to February 2015. The experimental design was completely randomized in a 5 x 4 factorial scheme: five leachate concentrations (0, 40, 60, 80 and 100 kg N ha-1) x four harvest periods (14, 21, 25 and 29 days after sowing), with five replicates each containing two plants. The data were subjected to analysis of variance and polynomial regression, and the results of the last harvest (29 DAS) were compared by Tukey test (p ≤ 0.05). The use of sanitary landfill leachate increased all analyzed variables in sunflower plants when compared to the control plants (without leachate), especially in the treatment of 100 kg N ha-1. There was no inhibitory effect of the leachate on the initial growth of sunflower seedlings under adopted experimental conditions.


Chemosphere ◽  
2017 ◽  
Vol 184 ◽  
pp. 1223-1229 ◽  
Author(s):  
Annabel Fernandes ◽  
Lazhar Labiadh ◽  
Lurdes Ciríaco ◽  
Maria José Pacheco ◽  
Abdellatif Gadri ◽  
...  

2016 ◽  
Vol 181 ◽  
pp. 515-521 ◽  
Author(s):  
Lazhar Labiadh ◽  
Annabel Fernandes ◽  
Lurdes Ciríaco ◽  
Maria José Pacheco ◽  
Abdellatif Gadri ◽  
...  

2021 ◽  
Vol 11 (11) ◽  
pp. 5009
Author(s):  
Mayk Teles de Oliveira ◽  
Ieda Maria Sapateiro Torres ◽  
Humberto Ruggeri ◽  
Paulo Scalize ◽  
Antonio Albuquerque ◽  
...  

Sanitary landfill leachate (LL) composition varies according to climate variables variation, solid waste characteristics and composition, and landfill age. Leachate treatment is essentially carried out trough biological and physicochemical processes, which have showed variability in efficiency and appear a costly solution for the management authorities. Electrocoagulation (EC) seems a suitable solution for leachate treatment taking into account the characteristics of the liquor. One of the problems of EC is the electrode passivation, which affects the longevity of the process. One solution to this problem could be the replacement of the electrode by one made of recyclable material, which would make it possible to change it frequently and at a lower cost. The objective of the present work was to evaluate the removal of heavy metals (As, Ba, Cd, Cr, Cu, Fe, Pb, Mn, Ni, Se and Zn) and coliforms from a LL by EC using electrodes made from steel swarf (SfE) up to 8 h. Removal efficiencies of detected heavy metals were 51%(Cr), 59%(As), 71%(Cd), 72%(Zn), 92%(Ba), 95%(Ni) and >99%(Pb). The microbial load of coliforms in leachate was reduced from 10.76 × 104 CFU/mL (raw leachate) to less than 1 CFU/mL (after treatment with SfE) (i.e., approximately 100% reduction). The use of SfE in EC of LL is very effective in removing heavy metals and coliforms and can be used as alternative treatment solution for such effluents.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Muhammad Fauzul Imron ◽  
Setyo Budi Kurniawan ◽  
Siti Rozaimah Sheikh Abdullah

AbstractLeachate is produced from sanitary landfills containing various pollutants, including heavy metals. This study aimed to determine the resistance of bacteria isolated from non-active sanitary landfill leachate to various heavy metals and the effect of salinity levels on the removal of Hg by the isolated bacterium. Four dominant bacteria from approximately 33 × 1017 colony-forming units per mL identified as Vibrio damsela, Pseudomonas aeruginosa, Pseudomonas stutzeri, and Pseudomonas fluorescens were isolated from non-active sanitary landfill leachate. Heavy metal resistance test was conducted for Hg, Cd, Pb, Mg, Zn, Fe, Mn, and Cu (0–20 mg L− 1). The removal of the most toxic heavy metals by the most resistant bacteria was also determined at different salinity levels, i.e., fresh water (0‰), marginal water (10‰), brackish water (20‰), and saline water (30‰). Results showed that the growth of these bacteria is promoted by Fe, Mn, and Cu, but inhibited by Hg, Cd, Pb, Mg, and Zn. The minimum inhibitory concentration (MIC) of all the bacteria in Fe, Mn, and Cu was > 20 mg L− 1. The MIC of V. damsela was 5 mg L− 1 for Hg and >  20 mg L− 1 for Cd, Pb, Mg, and Zn. For P. aeruginosa, MIC was > 20 mg L− 1 for Cd, Pb, Mg, and Zn and 10 mg L− 1 for Hg. Meanwhile, the MIC of P. stutzeri was > 20 mg L− 1 for Pb, Mg, and Zn and 5 mg L− 1 for Hg and Cd. The MIC of P. fluorescens for Hg, Pb, Mg, and Zn was 5, 5, 15, and 20 mg L− 1, respectively, and that for Cd was > 20 mg L− 1. From the MIC results, Hg is the most toxic heavy metal. In marginal water (10‰), P. aeruginosa FZ-2 removed up to 99.7% Hg compared with that in fresh water (0‰), where it removed only 54% for 72 h. Hence, P. aeruginosa FZ-2 is the most resistant to heavy metals, and saline condition exerts a positive effect on bacteria in removing Hg.


2016 ◽  
Vol 283 ◽  
pp. 76-88 ◽  
Author(s):  
Tânia F.C.V. Silva ◽  
Amélia Fonseca ◽  
Isabel Saraiva ◽  
Rui A.R. Boaventura ◽  
Vítor J.P. Vilar

Sign in / Sign up

Export Citation Format

Share Document