scholarly journals PD-1-Targeted Discovery of Peptide Inhibitors by Virtual Screening, Molecular Dynamics Simulation, and Surface Plasmon Resonance

Molecules ◽  
2019 ◽  
Vol 24 (20) ◽  
pp. 3784 ◽  
Author(s):  
Yuanqiang Wang ◽  
Haiqiong Guo ◽  
Zhiwei Feng ◽  
Siyi Wang ◽  
Yuxuan Wang ◽  
...  

The blockade of the programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) pathway plays a critical role in cancer immunotherapy by reducing the immune escape. Five monoclonal antibodies that antagonized PD-1/PD-L1 interaction have been approved by the Food and Drug Administration (FDA) and marketed as immunotherapy for cancer treatment. However, some weaknesses of antibodies, such as high cost, low stability, poor amenability for oral administration, and immunogenicity, should not be overlooked. To overcome these disadvantages, small-molecule inhibitors targeting PD-L1 were developed. In the present work, we applied in silico and in vitro approaches to develop short peptides targeting PD-1 as chemical probes for the inhibition of PD-1–PD-L1 interaction. We first predicted the potential binding pocket on PD-1/PD-L1 protein–protein interface (PPI). Sequentially, we carried out virtual screening against our in-house peptide library to identify potential ligands. WANG-003, WANG-004, and WANG-005, three of our in-house peptides, were predicted to bind to PD-1 with promising docking scores. Next, we conducted molecular docking and molecular dynamics (MD) simulation for the further analysis of interactions between our peptides and PD-1. Finally, we evaluated the affinity between peptides and PD-1 by surface plasmon resonance (SPR) binding technology. The present study provides a new perspective for the development of PD-1 inhibitors that disrupt PD-1–PD-L1 interactions. These promising peptides have the potential to be utilized as a novel chemical probe for further studies, as well as providing a foundation for further designs of potent small-molecule inhibitors targeting PD-1.

2021 ◽  
Vol 22 (20) ◽  
pp. 10924
Author(s):  
Yan Guo ◽  
Jianhuai Liang ◽  
Boping Liu ◽  
Yulong Jin

In cancer immunotherapy, an emerging approach is to block the interactions of programmed cell death-1 (PD-1) and programmed cell death-ligand 1 (PD-L1) using small-molecule inhibitors. The food-derived polyphenols curcumin (CC), res (RSV) and epigallocatechin gallate (EGCG) have anticancer immunologic functions, which, recently, have been proposed to act via the downregulation of PD-L1 expression. However, it remains unclear whether they can directly target PD-L1 dimerization and, thus, interrupt the PD-1/PD-L1 pathway. To elucidate the molecular mechanism of such compounds on PD-L1 dimerization, molecular docking and nanosecond molecular dynamics simulations were performed. Binding free energy calculations show that the affinities of CC, RSV and EGCG to the PD-L1 dimer follow a trend of CC > RSV > EGCG. Hence, CC is the most effective inhibitor of the PD-1/PD-L1 pathway. Analysis on contact numbers, nonbonded interactions and residue energy decomposition indicate that such compounds mainly interact with the C-, F- and G-sheet fragments of the PD-L1 dimer, which are involved in interactions with PD-1. More importantly, nonpolar interactions between these compounds and the key residues Ile54, Tyr56, Met115, Ala121 and Tyr123 play a dominant role in binding. Free energy landscape and secondary structure analyses further demonstrate that such compounds can stably interact with the binding domain of the PD-L1 dimer. The results provide evidence that CC, RSV and EGCG can inhibit PD-1/PD-L1 interactions by directly targeting PD-L1 dimerization. This provides a novel approach to discovering food-derived small-molecule inhibitors of the PD-1/PD-L1 pathway with potential applications in cancer immunotherapy.


2005 ◽  
Vol 345 (2) ◽  
pp. 214-226 ◽  
Author(s):  
Martin A. Wear ◽  
Alan Patterson ◽  
Kirk Malone ◽  
Colin Dunsmore ◽  
Nicholas J. Turner ◽  
...  

2015 ◽  
Vol 21 (1) ◽  
pp. 96-100 ◽  
Author(s):  
Allison E. Kennedy ◽  
Kristen S. Sheffield ◽  
Joseph K. Eibl ◽  
Michael B. Murphy ◽  
Rahul Vohra ◽  
...  

Small-molecule inhibitors have been previously investigated to identify possible therapeutics for the treatment of chronic pain. In the present study, known nerve growth factor (NGF) inhibitors identified by 125I-NGF binding were characterized using affinity and binding evaluations by surface plasmon resonance (SPR) spectroscopy. A novel strategy for characterizing NGF inhibitors was used to determine the binding affinity (KD) and saturation ability of each compound with immobilized NGF. Seventy-four percent of compounds screened demonstrated a positive binding event to NGF. A KD less than 10 μM and a percent saturation greater than 50% were used as thresholds to identify inhibitors that would warrant further investigation. This study details for the first time a methodology that can be used to directly characterize the binding event between small-molecule inhibitors and NGF.


2016 ◽  
Vol 22 (1) ◽  
pp. 32-39
Author(s):  
Levi L. Blazer ◽  
Fengling Li ◽  
Steven Kennedy ◽  
Yujun George Zheng ◽  
Cheryl H. Arrowsmith ◽  
...  

BCDIN3D is an RNA-methyltransferase that O-methylates the 5′ phosphate of RNA and regulates microRNA maturation. To discover small-molecule inhibitors of BCDIN3D, a suite of biochemical assays was developed. A radiometric methyltransferase assay and fluorescence polarization–based S-adenosylmethionine and RNA displacement assays are described. In addition, differential scanning fluorimetry and surface plasmon resonance were used to characterize binding. These assays provide a comprehensive package for the development of small-molecule modulators of BCDIN3D activity.


Sign in / Sign up

Export Citation Format

Share Document