differential scanning fluorimetry
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 68)

H-INDEX

19
(FIVE YEARS 4)

Life ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 106
Author(s):  
Fereniki Perperopoulou ◽  
Nirmal Poudel ◽  
Anastassios C. Papageorgiou ◽  
Farid S. Ataya ◽  
Nikolaos E. Labrou

Glutathione transferases (GSTs; EC. 2.5.1.18) are a large family of multifunctional enzymes that play crucial roles in the metabolism and inactivation of a broad range of xenobiotic compounds. In the present work, we report the kinetic and structural characterization of the isoenzyme GSTM1-1 from Camelus dromedarius (CdGSTM1-1). The CdGSΤM1-1 was expressed in E. coli BL21 (DE3) and was purified by affinity chromatography. Kinetics analysis showed that the enzyme displays a relative narrow substrate specificity and restricted ability to bind xenobiotic compounds. The crystal structures of CdGSΤM1-1 were determined by X-ray crystallography in complex with the substrate (GSH) or the reaction product (S-p-nitrobenzyl-GSH), providing snapshots of the induced-fit catalytic mechanism. The thermodynamic stability of CdGSTM1-1 was investigated using differential scanning fluorimetry (DSF) in the absence and in presence of GSH and S-p-nitrobenzyl-GSH and revealed that the enzyme’s structure is significantly stabilized by its ligands. The results of the present study advance the understanding of camelid GST detoxification mechanisms and their contribution to abiotic stress adaptation in harsh desert conditions.


2021 ◽  
Vol 15 (1) ◽  
pp. 29
Author(s):  
Soo Hyun Kim ◽  
Han Ju Yoo ◽  
Eun Ji Park ◽  
Dong Hee Na

Nano differential scanning fluorimetry (nanoDSF) is a high-throughput protein stability screening technique that simultaneously monitors protein unfolding and aggregation properties. The thermal stability of immunoglobulin G (IgG) was investigated in three different buffers (sodium acetate, sodium citrate, and sodium phosphate) ranging from pH 4 to 8. In all three buffers, the midpoint temperature of thermal unfolding (Tm) showed a tendency to increase as the pH increased, but the aggregation propensity was different depending on the buffer species. The best stability against aggregation was obtained in the sodium acetate buffers below pH 4.6. On the other hand, IgG in the sodium citrate buffer had higher aggregation and viscosity than in the sodium acetate buffer at the same pH. Difference of aggregation between acetate and citrate buffers at the same pH could be explained by a protein–protein interaction study, performed with dynamic light scattering, which suggested that intermolecular interaction is attractive in citrate buffer but repulsive in acetate buffer. In conclusion, this study indicates that the sodium acetate buffer at pH 4.6 is suitable for IgG formulation, and the nanoDSF method is a powerful tool for thermal stability screening and optimal buffer selection in antibody formulations.


2021 ◽  
Vol 22 (24) ◽  
pp. 13661
Author(s):  
Dinesh Chaudhary ◽  
Fangchen Chong ◽  
Trilok Neupane ◽  
Joonhyeok Choi ◽  
Jun-Goo Jee

Coppers play crucial roles in the maintenance homeostasis in living species. Approximately 20 enzyme families of eukaryotes and prokaryotes are known to utilize copper atoms for catalytic activities. However, small-molecule inhibitors directly targeting catalytic centers are rare, except for those that act against tyrosinase and dopamine-β-hydroxylase (DBH). This study tested whether known tyrosinase inhibitors can inhibit the copper-containing enzymes, ceruloplasmin, DBH, and laccase. While most small molecules minimally reduced the activities of ceruloplasmin and DBH, aside from known inhibitors, 5 of 28 tested molecules significantly inhibited the function of laccase, with the Ki values in the range of 15 to 48 µM. Enzyme inhibitory kinetics classified the molecules as competitive inhibitors, whereas differential scanning fluorimetry and fluorescence quenching supported direct bindings. To the best of our knowledge, this is the first report on organic small-molecule inhibitors for laccase. Comparison of tyrosinase and DBH inhibitors using cheminformatics predicted that the presence of thione moiety would suffice to inhibit tyrosinase. Enzyme assays confirmed this prediction, leading to the discovery of two new dual tyrosinase and DBH inhibitors.


2021 ◽  
Vol 8 ◽  
Author(s):  
Maria Carmina Scala ◽  
Simone Di Micco ◽  
Delia Lanzillotta ◽  
Simona Musella ◽  
Veronica Di Sarno ◽  
...  

The fragile histidine triad (FHIT) protein is a member of the large and ubiquitous histidine triad (HIT) family of proteins. On the basis of genetic evidence, it has been postulated that the FHIT protein may function as tumor suppressor, implying a role for the FHIT protein in carcinogenesis. Recently, Gaudio et al. reported that FHIT binds and delocalizes annexin A4 (ANXA4) from plasma membrane to cytosol in paclitaxel-resistant lung cancer cells, thus restoring their chemosensitivity to the drug. They also identified the smallest protein sequence of the FHIT still interacting with ANXA4, ranging from position 7 to 13: QHLIKPS. This short sequence of FHIT protein was not only able to bind ANXA4 but also to hold its target in the cytosol during paclitaxel treatment, thus avoiding ANXA4 translocation to the inner side of the cell membrane. Starting from these results, to obtain much information about structure requirements involved in the interaction of the peptide mentioned above, we synthetized a panel of seven peptides through an Ala-scan approach. In detail, to study the binding of FHIT derived peptides with ANXA4, we applied a combination of different biophysical techniques such as differential scanning fluorimetry (DSF), surface plasmon resonance (SPR), and microscale thermophoresis (MST). Circular dichroism (CD) and nuclear magnetic resonance (NMR) were used to determine the conformational structure of the lead peptide (7–13) and peptides generated from ala-scan technique. The application of different biophysical and structural techniques, integrated by a preliminary biological evaluation, allowed us to build a solid structure activity relationship on the synthesized peptides.


2021 ◽  
Author(s):  
Erika Chang de Azevedo ◽  
Alessandro S. Nascimento

Infectious diseases account for 25% of the causes of death worldwide and this rate is expected to increase with the increasing rate of antibiotic resistance observed for many pathogens. Among the bacterial pathogens usually found in healthcare associated infections, Escherichia coli and Staphylococcus aureus are the most prevalent pathogens and, for the former, about 50% of the isolates are found to be methicillin resistant. Given the limited number of targets/pathways observed for the mechanism of action for the existing antibiotics, the discovery of newer targets and their evaluation becomes an urgent and necessary task. Here we describe the structure-based identification of ticarcillin as a weak binder of the UDP-N-acetylglucosamine 2-epimerase (MnaA) from S. aureus. After a docking-based screening of existing drugs, ticarcillin was identified as a ligand in isothermal analysis of differential scanning fluorimetry data. An equilibrium molecular dynamics simulation confirmed the docking binding mode as a stable pose, with large contributions to the binding energy coming from interactions between Arg206 and Arg207 and the carboxylate groups in ticarcillin.


2021 ◽  
Author(s):  
Stefan Lenz ◽  
Iulia Bodnariuc ◽  
Margaret Renaud-Young ◽  
Tanille M. Shandro ◽  
Justin L. MacCallum

The transport of hydrophobic molecules, including long-chain fatty acids, within cells is highly dynamic. Hydrophobic molecules are unable to freely diffuse through the aqueous cytoplasm without a transporter. Fatty acid binding proteins (FABP) transport these molecules to different cellular compartments. As part of their transport, FABPs often associate with cell membranes to acquire and deliver their bound cargo. Understanding the nature of this transport is becoming increasingly important because lipid signaling functions are associated with metabolic pathways impacting disease pathologies such as carcinomas, autism and schizophrenia. Herein, we focus on Brain fatty acid binding protein (FABP7), which demonstrates localization to the cytoplasm and nucleus, influencing transcription and fatty acid metabolism. We use a combined biophysical approach to elucidate the interaction between FABP7 and model membranes. Specifically, we use microscale thermophoresis to show that FABP7 can bind oleic acid (OA) and docosahexaenoic acid (DHA) micelles, while differential scanning fluorimetry experiments show binding lowers the melting temperature of FABP7. Structural data from NMR and multiscale molecular dynamics simulations reveals that the interaction between FABP7 and micelles is through FABP7 portal region residues. Our simulations also capture binding events where fatty acids dissociate from the model membrane and bind to FABP7. Overall, our data reveals a novel interaction between FABP7 and OA or DHA micelles and provides key structural insight into the transport of hydrophobic molecules.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Samoil Sekulovski ◽  
Pascal Devant ◽  
Silvia Panizza ◽  
Tasos Gogakos ◽  
Anda Pitiriciu ◽  
...  

AbstractIntrons of human transfer RNA precursors (pre-tRNAs) are excised by the tRNA splicing endonuclease TSEN in complex with the RNA kinase CLP1. Mutations in TSEN/CLP1 occur in patients with pontocerebellar hypoplasia (PCH), however, their role in the disease is unclear. Here, we show that intron excision is catalyzed by tetrameric TSEN assembled from inactive heterodimers independently of CLP1. Splice site recognition involves the mature domain and the anticodon-intron base pair of pre-tRNAs. The 2.1-Å resolution X-ray crystal structure of a TSEN15–34 heterodimer and differential scanning fluorimetry analyses show that PCH mutations cause thermal destabilization. While endonuclease activity in recombinant mutant TSEN is unaltered, we observe assembly defects and reduced pre-tRNA cleavage activity resulting in an imbalanced pre-tRNA pool in PCH patient-derived fibroblasts. Our work defines the molecular principles of intron excision in humans and provides evidence that modulation of TSEN stability may contribute to PCH phenotypes.


Sign in / Sign up

Export Citation Format

Share Document