scholarly journals Development of a Current Collector with a Graphene Thin Film for a Proton Exchange Membrane Fuel Cell Module

Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 955
Author(s):  
Yean-Der Kuan ◽  
Ting-Ru Ke ◽  
Jyun-Long Lyu ◽  
Min-Feng Sung ◽  
Jing-Shan Do

This paper constructs planar-type graphene thin film current collectors for proton exchange membrane fuel cells (PEMFCs). The present planar-type current collector adopts FR-4 as the substrate and coats a copper thin film using thermal evaporation for the electric-conduction layer. A graphene thin film is then coated onto the current collector to prevent corrosion due to electrochemical reactions. Three different coating techniques are conducted and compared: Spin coating, RF magnetron sputtering, and screen printing. The corrosion rates and surface resistances are tested and compared for the different coating techniques. Single cell PEMFCs with the developed current collectors are assembled and tested. A PEMFC module with two cells is also designed and constructed. The cell performances are measured to investigate the device feasibility.

2015 ◽  
Vol 273 ◽  
pp. 105-109 ◽  
Author(s):  
R. Fiala ◽  
M. Vaclavu ◽  
M. Vorokhta ◽  
I. Khalakhan ◽  
J. Lavkova ◽  
...  

Author(s):  
P. W. Li ◽  
S. P. Chen ◽  
M. K. Chyu

In order to improve the power output of a fuel cell, a novel approach for gas delivery and mass transfer enhancement in a gas distributor is proposed. A model analyzing the power output against the dimensions of a novel gas delivery channel and current collector is also presented. Experimental study for some proton-exchange-membrane fuel cells and numerical analysis for a planar type solid oxide fuel cell are carried out. Significant improvement of power output was obtained for the newly designed fuel cells compared to conventional ones. Both the experimental results and modeling analysis are of great significance to the design of fuel cells.


Sign in / Sign up

Export Citation Format

Share Document