scholarly journals HOCl Responsive Lanthanide Complexes Using Hydroquinone Caging Units

Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1959
Author(s):  
Elena Del Giorgio ◽  
Thomas Just Sørensen

Redox biology is still looking for tools to monitor redox potential in cellular biology and, despite a large and sustained effort, reliable molecular probes have yet to emerge. In contrast, molecular probes for reactive oxygen and nitrogen have been widely explored. In this manuscript, three kinetically inert lanthanide complexes that selectively react with hypochlorous acid are prepared and characterized. The design is based on 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (DO3A) and 1,4,7,10-tetraazacyclododecane-1,7-diacetic acid (DO2A) ligands appended with one or two redox active hydroquinone derived arms, thereby forming octadentate ligands ideally suited to complex trivalent lanthanide ions. The three complexes are found to react selectively with hypochlorous acid to form highly symmetric lanthanide(III) 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacedic acid (DOTA) complexes. The conversion of the probe to [Ln.DOTA]− is followed by luminescence, absorption, and NMR spectroscopy in a model system comprised of a Triton-X modified HEPES buffer. It was concluded that the design principle works, and that simple caging units like hydroquinones can work well in conjugation with lanthanide(III) complexes.

2015 ◽  
Vol 39 (10) ◽  
pp. 7696-7702 ◽  
Author(s):  
Wenliang Huang ◽  
Jonathan L. Brosmer ◽  
Paula L. Diaconescu

The scope of an in situ method to prepare rare-earth alkyl and halide precursors was extended to cerium, praseodymium, samarium, terbium, thulium, and ytterbium.


2005 ◽  
Vol 88 (2) ◽  
pp. 101-131 ◽  
Author(s):  
Martinus H.V. Werts

The luminescence of trivalent lanthanide ions has found applications in lighting, lasers, optical telecommunications, medical diagnostics, and various other fields. This introductory review presents the basics of organic and inorganic luminescent materials containing lanthanide ions, their applications, and some recent developments. After a brief history of the discovery, purification and early spectroscopic studies of the lanthanides, the radiative and nonradiative transitions of the 4f electrons in lanthanide ions are discussed. Lanthanide-doped phosphors, glasses and crystals as well as luminescent lanthanide complexes with organic ligands receive attention with respect to their preparation and their applications. Finally, two recent developments in the field of luminescent materials are addressed: near-infrared luminescent lanthanide complexes and lanthanide-doped nanoparticles.


2018 ◽  
Vol 20 (21) ◽  
pp. 14564-14577 ◽  
Author(s):  
Alexandra Ya. Freidzon ◽  
Ilia A. Kurbatov ◽  
Vitaliy I. Vovna

A fully ab initio computational scheme employing CASSCF/XMCQDPT2/SO-CASSCF for the absorption and emission spectra of trivalent lanthanide complexes is presented.


Author(s):  
Marco Bortoluzzi ◽  
Valentina Ferraro ◽  
Federica Sartor

AbstractBright photoluminescent neutral complexes having general formula [Ln(tbtz)3] (Ln = Eu, Tb; tbtz = tris(benzotriazol-1-yl)borate) were obtained by reacting K[tbtz] with EuCl3 and TbCl3. The emissions in the visible range, related to the f-f transitions of the trivalent lanthanide ions, are observable upon excitation with wavelengths shorter than 350 nm. The most intense emission bands correspond to the 5D0 → 7F4 transition at 699 nm for the europium complex and to the 5D4 → 7F5 transition at 542 nm for the terbium derivative. The luminescence is in all the cases mostly associated with the antenna-effect from the coordinated tbtz ligands. The synthetic approach was successfully extended to the preparation of the analogous yttrium and gadolinium derivatives. Tricapped trigonal prismatic geometry was attributed to the complexes on the basis of luminescence data and DFT calculations. Highly photoluminescent plastic materials were obtained by embedding small amounts of [Eu(tbtz)3] or [Tb(tbtz)3] in poly(methyl methacrylate).


2017 ◽  
Author(s):  
Olivier Charles Gagné

Bond-length distributions have been examined for eighty-four configurations of the lanthanide ions and twenty-two configurations of the actinide ions bonded to oxygen. The lanthanide contraction for the trivalent lanthanide ions bonded to O<sup>2-</sup> is shown to vary as a function of coordination number and to diminish in scale with increasing coordination number.


2021 ◽  
Author(s):  
Damien Mouchel dit Leguerrier ◽  
Richard Barre ◽  
Quentin Ruet ◽  
Daniel Imbert ◽  
Christian Philouze ◽  
...  

The lanthanide(III) complexes (Gd, Eu, Dy, Yb) of DOTA tris(amide) and bis(amide) derivatives (L1 and L2) featuring one redox active TEMPO arm were prepared. Ligand L2 harbours an alkyne fragment...


2016 ◽  
Vol 45 (46) ◽  
pp. 18484-18493 ◽  
Author(s):  
Fei Kou ◽  
Suliang Yang ◽  
Hongjuan Qian ◽  
Lihua Zhang ◽  
Christine M. Beavers ◽  
...  

Trivalent lanthanide ions form 1 : 1, 1 : 2, and 1 : 3 complexes with tridentate ligand TMDGA in 1 M H/NaNO3 and form 1 : 3 extracted complexes with DMDODGA during solvent extraction.


2006 ◽  
Vol 6 (3) ◽  
pp. 830-836 ◽  
Author(s):  
Yang Cui ◽  
Xianping Fan ◽  
Zhanglian Hong ◽  
Minquan Wang

Synthesis process and luminescence properties of trivalent lanthanide ions (Ln3+) doped YF3 nanoparticles have been investigated. To synthesis Ln3+-doped YF3 nanoparticles, the mixture of (YCl3·nH2O + LnCl3·nH2O), and NH4F was hydrothermal treated at 180 °C in a Teflon-liner auto-clave or heated at higher temperatures (400 °C ∼ 600 °C) in a stove. The XRD patterns showed that the Ln3+-doped orthorhombic YF3 nanoparticles with no second phase have been prepared. The solid solution Y1−xEuxF3 (x = 0 ∼ 0.4) nanoparticles have been synthesized. The luminescence concentration quenching resulted from resonance energy transfer between neighboring Eu3+ ions occurred at higher Eu3+ concentrations (30 mol%). The upconversion luminescence of Er3+−Yb3+ codoped YF3 nanoparticles under 980 nm excitation has also been observed. With increase of heated temperature, the size of the Er3+−Yb3+ codoped YF3 nanoparticles increased gradually, and upconversion luminescence intensity increased significantly.


Sign in / Sign up

Export Citation Format

Share Document