scholarly journals Determination of Triacylglycerols by HTGC-FID as a Sensitive Tool for the Identification of Rapeseed and Olive Oil Adulteration

Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3881
Author(s):  
Ying Qian ◽  
Magdalena Rudzińska ◽  
Anna Grygier ◽  
Roman Przybylski

Triacylglycerols (TGs) are the most common compounds in food lipids, accounting for 95% of the weight of edible oils. The aim of this study was to scrutinize a procedure for quantitatively assessing possible adulteration of olive and rapeseed oil through GC-FID analysis of TGs. The recovery of TG standards ranged from 21% to 148%, and the relative response factor (RRF) ranged from 0.42 to 2.28. The limits of detection were in the range of 0.001 to 0.330 µg/mL, and the limits of quantitation from 0.001 to 1.000 µg/mL. The validated method was used to determine the TGs in olive oil (OO), refined rapeseed oil (RRO), and their blends. Eight TGs were detected in refined rapeseed oil, and 10 in olive oil. The addition of 1% of olive oil to rapeseed oil or vice versa can be detected using this method. Three triacylglycerols were pinpointed as indicators of adulteration of rapeseed oil with olive oil (PPO, PPL, PSO). The method described here can be used for controlling the quality of these oils.

2004 ◽  
Vol 53 (10) ◽  
pp. 1139-1147 ◽  
Author(s):  
Yuichi HORII ◽  
Takao KATASE ◽  
Yun-Seok KIM ◽  
Nobuyoshi YAMASHITA

2012 ◽  
Vol 70 ◽  
pp. 111-116 ◽  
Author(s):  
Bart M.J. De Spiegeleer ◽  
Matthias D’Hondt ◽  
Elien Vangheluwe ◽  
Kirsten Vandercruyssen ◽  
Bart V.I. De Spiegeleer ◽  
...  

1996 ◽  
Vol 123 (1-4) ◽  
pp. 45-53 ◽  
Author(s):  
Luigi Turrio-Baldassarri ◽  
Alessandro di Domenico ◽  
Annarita Fulgenzi ◽  
Cinzia La Rocca ◽  
Nicola Iacovella ◽  
...  

Foods ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1870
Author(s):  
Ramón Aparicio-Ruiz ◽  
Sara Barbieri ◽  
Tullia Gallina Toschi ◽  
Diego L. García-González

Sensory assessment of virgin olive oil (“panel test”) is the only sensory method included in international regulations of edible oils and its application is compulsory. Even if its application has been a success in quality control, improving the quality of virgin olive oils over the last 30 years, at present, there is no reference material (RM), in the strict sense of the term, to be used as a validated standard for sensory defects of virgin olive oil with which tasters can be trained. Usually, real samples of virgin olive oils assessed by many panels for the International Olive Council (IOC) ring tests are used as materials of reference in panel training and control. The latter are highly representative of the main perceived defects, but availability is limited, samples are not homogeneous year after year, and other secondary defects can be present. Thus, in order to provide solutions, this work describes an analytical procedure for implementing olfactory formulations that emulate rancid and winey-vinegary defects found in virgin olive oils with the aim of providing reproducible RMs that can be prepared on demand. A strategy for designing RMs for aroma is presented and the optimization process to obtain the best formulation is described. Under the criteria of representativeness, verified with the advice of the IOC, aroma persistence, and simplicity in formulation, two RMs for winey-vinegary and rancid were obtained by diluting acetic acid and ethanol (winey-vinegary defect) and hexanal (rancid defect) together with other compounds that are used to modify aroma and avoid non-natural sensory notes.


2019 ◽  
Vol 9 (12) ◽  
pp. 2433 ◽  
Author(s):  
Shiyamala Duraipandian ◽  
Jan C. Petersen ◽  
Mikael Lassen

Adulteration of extra virgin olive oil (EVOO) with cheaper edible oils is of considerable concern in the olive oil industry. The potential of Raman spectroscopy combined with multivariate statistics has been investigated for evaluating the authenticity (or purity) and concentration of EVOO irrespective of it being adulterated with one or more adulterants. The adulterated oil samples were prepared by blending different concentrations of EVOO (10–100% v/v) randomly with cheaper edible oils such as corn, soybean and rapeseed oil. As a result, a Raman spectral database of oil samples (n = 214 spectra) was obtained from 11 binary mixtures (EVOO and rapeseed oil), 16 ternary mixtures (EVOO, rapeseed and corn oil) and 44 quaternary mixtures (EVOO, rapeseed, corn and soybean oil). Partial least squares (PLS) calibration models with 10-fold cross validation were constructed for binary, ternary and quaternary oil mixtures to determine the purity of spiked EVOO. The PLS model on the complex dataset (binary + ternary + quaternary) where the spectra obtained with different measurement parameters and sample conditions can able to determine the purity of spiked EVOO inspite of being blended with one or more cheaper oils. As a proof of concept, in this study, we used single batch of commercial oil bottles for estimating the purity of EVOO. The developed method is not only limited to EVOO, but can be applied to clean EVOO obtained from the production site and other types of food.


2010 ◽  
Vol 93 (3) ◽  
pp. 936-942 ◽  
Author(s):  
Lei Bao ◽  
Mary W Trucksess ◽  
Kevin D White

Abstract Edible oils are consumed directly, and used as ingredients in food, soaps, and skin products. However, oils such as olive oil, peanut oil, and sesame oil could be contaminated with aflatoxins, which are detrimental to human and animal health. A method using immunoaffinity column cleanup with RPLC separation and fluorescence detection (FLD) for determination of aflatoxins (AF) B1, B2, G1, and G2 in olive oil, peanut oil, and sesame oil was developed and validated. Test samples were extracted with methanolwater (55 + 45, v/v). After shaking and centrifuging, the lower layer was filtered, diluted with water, and filtered through glass microfiber filter paper. The filtrate was then passed through an immunoaffinity column, and the toxins were eluted with methanol. The toxins were then subjected to RPLC/FLD analysis after postcolumn UV photochemical derivatization. The accuracy and repeatability characteristics of the method were determined. Recoveries of AFB1 spiked at levels from 1.0 to 10.0 g/kg in olive oil, peanut oil, and sesame oil ranged from 82.9 to 98.6. RSDs ranged from 0.6 to 8.9. HorRat values were <0.2 for all of the matrixes tested. Recoveries of AF spiked at levels from 2.0 to 20.0 g/kg ranged from 87.7 to 102.2. RSDs ranged from 1.3 to 12.6. HorRat values were <0.4 for all of the matrixes tested. LC/MS/MS with multiple-reaction monitoring was used to confirm the identities of aflatoxins in a naturally contaminated peanut oil.


2015 ◽  
Vol 66 (4) ◽  
pp. e106 ◽  
Author(s):  
L. L. Zhou ◽  
C. Li ◽  
X. C. Weng ◽  
X. M. Fang ◽  
Z. H. Gu

Sign in / Sign up

Export Citation Format

Share Document