scholarly journals Mechanistic Insights into the Chaperoning of Human Lysosomal-Galactosidase Activity: Highly Functionalized Aminocyclopentanes and C-5a-Substituted Derivatives of 4-epi-Isofagomine

Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 4025
Author(s):  
Patrick Weber ◽  
Martin Thonhofer ◽  
Summer Averill ◽  
Gideon J. Davies ◽  
Andres Gonzalez Santana ◽  
...  

Glycosidase inhibitors have shown great potential as pharmacological chaperones for lysosomal storage diseases. In light of this, a series of new cyclopentanoid β-galactosidase inhibitors were prepared and their inhibitory and pharmacological chaperoning activities determined and compared with those of lipophilic analogs of the potent β-d-galactosidase inhibitor 4-epi-isofagomine. Structure-activity relationships were investigated by X-ray crystallography as well as by alterations in the cyclopentane moiety such as deoxygenation and replacement by fluorine of a “strategic” hydroxyl group. New compounds have revealed highly promising activities with a range of β-galactosidase-compromised human cell lines and may serve as leads towards new pharmacological chaperones for GM1-gangliosidosis and Morquio B disease.

Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 305
Author(s):  
Guangyuan Luo ◽  
Li Zheng ◽  
Qilin Wu ◽  
Senhua Chen ◽  
Jing Li ◽  
...  

Six new fusarin derivatives, fusarins G–L (1–6), together with five known compounds (5–11) were isolated from the marine-derived fungus Fusarium solani 7227. The structures of the new compounds were elucidated by means of comprehensive spectroscopic methods (1D and 2D NMR, HRESIMS, ECD, and ORC) and X-ray crystallography. Compounds 5–11 exhibited potent anti-inflammatory activity by inhibiting the production of NO in RAW264.7 cells activated by lipopolysaccharide, with IC50 values ranging from 3.6 to 32.2 μM. The structure–activity relationships of the fusarins are discussed herein.


2005 ◽  
Vol 83 (8) ◽  
pp. 1071-1083 ◽  
Author(s):  
Shasta Moser ◽  
Ryan Church ◽  
M Brad Peori ◽  
Keith Vaughan

Two new series of bistriazenes have been synthesized from a general reaction of diazonium salts with a mixture of a propanediamine and formaldehyde. Such reaction with 1,3-diaminopropane itself affords the 1-[2-aryl-1-diazenyl]-3-(3-[2-aryl-1-diazenyl]hexahydro-1-pyrimidinylmethyl)hexahydropyrimidines (6). 2,2-Dimethyl-1,3-diamino propane reacts in an analogous manner to give the 1-(5,5-dimethyl-3-[2-aryl-1-diazenyl]hexahydro-1-pyrimidinylmethyl)- 5,5-dimethyl-3-[2-aryl-1-diazenyl]hexahydropyrimidines (7). All new compounds have been characterized by IR and NMR spectroscopy, with elemental analysis or high resolution mass spectrometry of most of the new compounds. NMR assignments have been analyzed by a series of DEPT, COSY, and HSQC experiments. One example of each series has been unequivocally characterized by X-ray crystallography. The general conclusion of this study is that alkanediamines with three carbon atoms in the spacer link between the nitrogen atoms give rise to the linear bicyclic molecules of type 18, in contrast to the case of ethylenediamine (spacer link has two carbon atoms), which affords cage-like molecules of type 17.Key words: bistriazene, hexahydropyrimidine, diazonium coupling, formaldehyde, diaminopropane, nuclear magnetic resonance.


2021 ◽  
pp. 174751982198965
Author(s):  
Guoqi Zhang

( E)-4-[2-(Pyridin-4-yl)vinyl]benzaldehyde, containing both a 4-vinylpyridine and an aldehyde functionality, is utilized to develop new, highly conjugated chalcone compounds and a bis-Schiff base azine compound. The chalcone-containing compounds are further explored for their protonation, methylation and silver(I) coordination chemistry using the pyridine moiety. In parallel, a cyano-containing analogue, ( E)-4-[2-(pyridin-4-yl)vinyl]benzonitrile is also synthesized and studied for its silver(I) coordination chemistry. These new compounds are fully characterized by mass spectrometry, elemental analysis and spectroscopic techniques. The methylated product of ( E)-1-(9-anthryl)-3-{4-[2-(pyridin-4-yl)vinyl]phenyl}prop-2-en-1-one and a silver complex of ( E)-4-[2-(pyridin-4-yl)vinyl]benzonitrile are structurally determined by X-ray crystallography.


1997 ◽  
Vol 75 (5) ◽  
pp. 499-506 ◽  
Author(s):  
E.H. De Oliveira ◽  
G.E.A. Medeiros ◽  
C. Peppe ◽  
Martyn A. Brown ◽  
Dennis G. Tuck

The electrochemical oxidation of a sacrificial metal anode (M = Zn, Cd, Cu) in an acetonitrile solution of 2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone, lapachol, C15H14O3 (=HL) gives ML2. The results are in keeping with earlier work on direct electrochemical synthesis in related systems. Adducts with 2,2′-bipyridine (bpy) and N,N,N′,N′-tetramethylethanediamine (tmen) have also been prepared. The structure of the 2,2′-bipyridine adduct of Cu(lapacholate)2 has been established by X-ray crystallography. The parameters are triclinic, space group [Formula: see text], a = 12.748(59) Å, b = 13.859(49) Å, c = 11.770(59) Å, α = 108.30(4)°, β = 108.08(3)°, γ = 68.94(3)°, Z = 2, R = 0.059 for 2256 unique reflections. The copper atom is in a distorted CuN2O2O2′ environment. The mechanism of the formation of this Cu(lapacholate)2 is discussed. Keywords: electrochemical synthesis, lapachol, X-ray crystallography, copper(II) complex.


2006 ◽  
Vol 84 (10) ◽  
pp. 1294-1300 ◽  
Author(s):  
Keith Vaughan ◽  
Shasta Lee Moser ◽  
Reid Tingley ◽  
M Brad Peori ◽  
Valerio Bertolasi

Reaction of a series of diazonium salts with a mixture of formaldehyde and 1,2-diamino-2-methylpropane affords the 3-({5,5-dimethyl-3-[2-aryl-1-diazenyl]-1-imidazolidinyl}methyl)-4,4-dimethyl-1-[2-aryl-1-diazenyl]imidazolidines (1a–1f) in excellent yield. The products have been characterized by IR and NMR spectroscopic analysis, elemental analysis, and X-ray crystallography. The X-ray crystal structure of the p-methoxycarbonyl derivative (1c) establishes without question the connectivity of these novel molecules, which can be described as linear bicyclic oligomers with two imidazolidinyl groups linked together by a one-carbon spacer. This is indeed a rare molecular building block. The molecular structure is corroborated by 1H and 13C NMR data, which correlates with the previously published data of compounds of types 5 and 6 derived from 1,3-propanediamine. The triazene moieties in the crystal of 1c display significant π conjugation, which gives the N—N bond a significant degree of double-bond character. This in turn causes restricted rotation around the N—N bond, which leads to considerable broadening of signals in both the 1H and 13C NMR spectra. The molecular ion of the p-cyanophenyl derivative (1b) was observed using electrospray mass spectrometry (ES + Na). The mechanism of formation of molecules of type 1 is proposed to involve diazonium ion trapping of the previously unreported bisimidazolidinyl methane (13).Key words: triazene, bistriazene, imidazolidine, synthesis, X-ray crystallography, NMR spectroscopy.


Marine Drugs ◽  
2020 ◽  
Vol 18 (8) ◽  
pp. 426 ◽  
Author(s):  
Senhua Chen ◽  
Yanlian Deng ◽  
Chong Yan ◽  
Zhenger Wu ◽  
Heng Guo ◽  
...  

Two new benzofurans, alternabenzofurans A and B (1 and 2) and two new sesquiterpenoids, alternaterpenoids A and B (3 and 4), along with 18 known polyketides (5−22), were isolated from the marine-derived fungus Alternaria sp. 5102. Their structures were elucidated on the basis of extensive spectroscopic analyses (1D and 2D NMR, HR-ESIMS, and ECD) and X-ray crystallography, as well as the modified Mosher’s method. Compounds 2, 3, 5, 7, 9–18, and 20–22 exhibited potent anti-inflammatory activity by inhibiting the production of NO in RAW264.7 cells activated by lipopolysaccharide with IC50 values in the range from 1.3 to 41.1 μM. Structure-activity relationships of the secondary metabolites were discussed.


Author(s):  
Marie-Rose Van Calsteren ◽  
Ricardo Reyes-Chilpa ◽  
Chistopher K Jankowski ◽  
Fleur Gagnon ◽  
Simón Hernández-Ortega ◽  
...  

The tropical tree Calophyllum brasiliense (Clusiaceae) grows in the rain forests from Brazil to Mexico. Its leaves, as well as those of other Calophyllum species, are rich sources of chromanone acids, such as apetalic acid, isoapetalic acid, and their derivatives. Apetalic acid has shown significant antimycobacterial activity. The biological activity of apetalic acid has been related to the configuration of three asymmetric centers and the stereochemistry of the molecule; however, the C-19 configuration in the acidic side chain has not been fully resolved. For this reason, the unequivocal determination of the absolute configuration by means of X-ray crystallography in a sample of unique homogeneous apetalic acid stereoisomer was the most important point to start this study. We prepared some chiral amides using the carboxyl group. We determined the C-19 stereochemistry of apetalic acid, and its specific chiral derivatives, using NMR, X-ray diffraction methods, and molecular mechanics. Finally, we observed that steric hindrance in the side chain of apetalic acid leads to restriction of rotation around the pivotal link C-10 and C-19 establishing chiral centers at C2(R), C3(S), and C19(R). We were able to separate derivatives of these two high-rotatory-barrier conformers of apetalic acid by forming diastereoisomeric amides with phenylglycine methyl ester having a chiral center at C-2’. Our results allowed the conclusion of the existence of atropisomerism in the apetalic acid molecule.


Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3186 ◽  
Author(s):  
Vasilyev ◽  
Bizyaev ◽  
Komarov ◽  
Gatilov ◽  
Tkachev

A synthetic approach to a new group of stable chiral C2-symmetric diimines with the 4,5-diazafluorene core has been developed based on condensation of dipinodiazafluorene with aromatic diamines. The chemical structures of new compounds were proven by spectroscopic methods and X-ray crystallography. All the compounds form solvates with organic solvents (chloroform, benzene, 1,4-dioxane) and water. Specific spectral data of the new compounds are explained using calculated data (DFT). Diimines of the pinodiazafluorene series give colored reactions with transition metal ions and can be regarded as prospective polydentate ligands with interesting luminescent and chiroptical properties.


1996 ◽  
Vol 52 (4) ◽  
pp. 651-661 ◽  
Author(s):  
A. Antolić ◽  
B. Kojić-Prodić ◽  
S. Tomić ◽  
B. Nigović ◽  
V. Magnus ◽  
...  

As part of the molecular recognition studies on the phytohormone indole-3-acetic acid (IAA) a series of fluorinated IAA's has been examined. The phenyl ring substitution at positions 4, 5, 6 and 7 resulted in four compounds, which were analyzed. Structure–activity correlation includes the analysis of their molecular conformations, based on the X-ray diffraction and computational chemistry results, and bioactivity determinations in the Avena coleoptile and the Pisum sativum stem straight-growth tests, lipophilicity and UV absorbance. The conformations of monofluorinated IAA's and a free hormone are defined by rotations about two bonds: one describes the relative orientation of a side chain towards the indole plane and the second the orientation of the carboxylic group. The results of X-ray structure analysis revealed the folded shape of the molecules in all compounds studied. Molecular mechanics and dynamics located the folded conformation as the local minimum, but failed to detect the planar conformation as one of the local minima, which according to ab initio results on IAA and 4-CI-IAA could also be possible. Crystal data at 295 K for 4-F-IAA and at 297 K for 5-F-IAA, and at 100 K for 6-F-IAA and 7-F-IAA using Mo Kα radiation (λ = 0.71073 Å) and Cu Kα (λ = 1.5418 Å, for 7-F-IAA), are as follows: 4-F-IAA, C10H8NO2F, Mr = 193.18, monoclinic, C2/c, a = 17.294 (5), b = 13.875 (4), c = 7.442 (4) Å, β = 103.88 (6)°, V = 1734 (1) Å3, Z = 8, Dx = 1.480 g cm−3, μ = 1.1 cm−1, F(000) = 800, R = 0.043, wR = 0.044 for 823 symmetry-independent [I ≥ 3σ(I)] reflections; 5-F-IAA, C10H8NO2F, monoclinic, P21/c, a = 19.284 (5), b = 5.083 (4), c = 9.939 (4) Å, β = 117.28 (6)°, V = 865.9 (1) Å3, Z = 4, Dx = 1.482 g cm−3, μ = 1.1  cm−1, F(000) = 400, R = 0.062, wR = 0.057 for 729 symmetry-independent [I ≥ 3σ(I)] reflections; 6-F-IAA, C10H8NO2F, monoclinic, P21/a, a = 9.360 (1), b = 5.167 (4), c = 17.751 (4) Å, β = 93.75 (1)°, V = 856.7 (8) Å3, Z = 4, Dx = 1.498 g cm−3, μ = 1.1 cm−1, F(000) = 400, R = 0.048, wR = 0.048 for 1032 symmetry-independent [I ≥ 2σ(I)] reflections; 7-F-IAA, C10H8NO2F, monoclinic, P21/a, a = 9.935 (5), b = 5.0059 (4), c = 17.610 (1) Å, β = 102.13 (1)°, V = 856.3 (1) Å3, Z = 4, Dx = 1.498 g cm−3, μ = 9.8 cm−1 (Cu Kα, F(000) = 400, R = 0.035, wR = 0.040 for 1504 symmetry-independent [I ≥ 2σ(I)] reflections.


2005 ◽  
Vol 58 (3) ◽  
pp. 199 ◽  
Author(s):  
Ethan D. Goddard-Borger ◽  
Brian W. Skelton ◽  
Robert V. Stick ◽  
Allan H. White

The use of 1H NMR spectroscopy, in tandem with X-ray crystallography, has cast light on the conformation of the 1,6-disulfide-bridged derivatives of d-gluco-, d-manno-, d-allo-, d-galacto-, and d-talo-pyranose. A similar investigation was performed on the thiosulfinate derived from the d-gluco disulfide. Single-crystal X-ray structure determinations are reported for (1S,5S,6S,7S,8R)-6,7,8-tribenzoyloxy-9-oxa-2,3-dithiabicyclo[3.3.1]nonane, (1S,5S,6S,7R,8R)-6,7,8-tribenzoyloxy-9-oxa-2,3-dithiabicyclo[3.3.1]nonane, and (1S,2S,5S,6S,7S,8R)-6,7,8-triacetoxy-9-oxa-2,3-dithiabicyclo[3.3.1]nonane 2-oxide.


Sign in / Sign up

Export Citation Format

Share Document