scholarly journals Imaging Sequences for Hyperpolarized Solids

Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 133
Author(s):  
Xudong Lv ◽  
Jeffrey Walton ◽  
Emanuel Druga ◽  
Raffi Nazaryan ◽  
Haiyan Mao ◽  
...  

Hyperpolarization is one of the approaches to enhance Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) signal by increasing the population difference between the nuclear spin states. Imaging hyperpolarized solids opens up extensive possibilities, yet is challenging to perform. The highly populated state is normally not replenishable to the initial polarization level by spin-lattice relaxation, which regular MRI sequences rely on. This makes it necessary to carefully “budget” the polarization to optimize the image quality. In this paper, we present a theoretical framework to address such challenge under the assumption of either variable flip angles or a constant flip angle. In addition, we analyze the gradient arrangement to perform fast imaging to overcome intrinsic short decoherence in solids. Hyperpolarized diamonds imaging is demonstrated as a prototypical platform to test the theory.

1988 ◽  
Vol 11 (2) ◽  
pp. 97-102 ◽  
Author(s):  
Kiichiro Matsumura ◽  
Imaharu Nakano ◽  
Nobuo Fukuda ◽  
Hiroo Ikehira ◽  
Yukio Tateno ◽  
...  

1991 ◽  
Vol 46 (12) ◽  
pp. 1123-1130 ◽  
Author(s):  
H. Langen ◽  
W. Müller-Warmuth

Abstract Proton spin lattice relaxation rates have been measured at 15 and 30 MHz and down to 5 K for the partially deuterated molecular crystals 4-F-toluene, 4-Cl-toluene, and 2,6-Cl2-toluene. The behaviour of these materials is governed by methyl group tunnelling. As compared with the undeuterated compounds, the low temperature relaxation is enhanced and the details depend on the removal of the symmetry coupling between rotator and spin states. The hindering barriers remain unchanged, the A to E conversion rates are faster, and relaxation is dominated by spectral density contributions J(2ωo) and J(2ω0). In one case an additional influence of level-crossing energy transfer on relaxation is observed. Field-cycling spectroscopy reveals steps rather than peaks if the proton spin Zeeman and tunnelling splittings match


Sign in / Sign up

Export Citation Format

Share Document