scholarly journals Genotoxicity of Water Extract from Bark-Removed Rhus verniciflua Stokes

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 896
Author(s):  
Sung-Bae Lee ◽  
Jin-Seok Lee ◽  
Jing-Hua Wang ◽  
Min-Young Kim ◽  
Yung-Hyun Choi ◽  
...  

Rhus verniciflua Stokes (RVS) has been traditionally used as an herbal remedy to support the digestive functions in traditional Korean medicine. Additionally, the pharmacological effects of RVS, including antioxidative, antimicrobial and anticancer activities, have been well-reported. The genotoxicity of RVS, however, is elusive; thus, we evaluated the genotoxicity of RVS without bark (RVX) for safe application as a resource of functional food or a medical drug. To evaluate the genotoxicity of RVX, we used a bacterial reverse mutation test, chromosomal aberration test and comet assay, according to the “Organization for Economic Co-operation and Development” (OECD) guidelines. Briefly, for the reverse mutation test, samples (5000, 1667, 556, 185, 62 and 0 μg/plate of RVX or the positive control) were treated with a precultured strain (TA98, TA100, TA1535, TA1537 or WP2µvrA) with or without the S9 mix, in which RVX partially induced a reverse mutation in four bacterial strains. From the chromosomal aberration test and comet assay, the RVX samples (556, 185, 62, 20 and 0 μg/mL of RVX or the positive control) were treated in a Chinese hamster ovary cell line (CHO-K1 cells) in the conditions of the S9 mix absent or S9 mix present and in Chang liver cells and C2C12 myoblasts, respectively. No chromosomal aberrations in CHO-K1 or DNA damage in Chang liver cells and C2C12 myoblasts was observed. In conclusion, our results suggest the non-genotoxicity of RVX, which would be helpful as a reference for the safe application of bark-removed Rhus verniciflua Stokes as functional raw materials in the food, cosmetics or pharmaceutical fields.

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Youn-Hwan Hwang ◽  
Taesoo Kim ◽  
Won-Kyung Cho ◽  
Hye Jin Yang ◽  
Dong Hoon Kwak ◽  
...  

Arisolochiae speciesplants containing aristolochic acids I and II (AA I and AA II) are well known to cause aristolochic acid nephropathy (AAN). Recently, there are various approaches to use AAs-containing herbs after the removal of their toxic factors. However, there is little information about genotoxicity ofArisolochiae manshuriensisKom. (AMK)per se. To obtain safety information for AMK, its genotoxicity was evaluated in accordance with OECD guideline. To evaluate genotoxicity of AMK, we tested bacterial reverse mutation assay, chromosomal aberration test, and micronucleus test. Here, we also determined the amounts of AA I and II in AMK (2.85 ± 0.08 and 0.50 ± 0.02 mg/g extract, resp.). In bacterial reverse mutation assay, AMK dose-dependently increased revertant colony numbers in TA98, TA100 and TA1537 regardless of metabolic activation. AMK increased the incidence of chromosomal aberration in Chinese hamster ovary-K1 cells, but there was no statistically significant difference. The incidences of micronucleus in bone marrow erythrocyte were significantly increased in mice after oral administration of AMK (5000 mg/kg), comparing with those of vehicle group (P<0.05). The results of three standard tests suggest that the genotoxicity of AMK is directly related to the AAs contents in AMK.


2020 ◽  
pp. S661-S679
Author(s):  
J Chrz ◽  
B Hošíková ◽  
L Svobodová ◽  
D Očadlíková ◽  
H Kolářová ◽  
...  

Growing worldwide efforts to replace (reduce) animal testing and to improve alternative in vitro tests which may be more efficient in terms of both time, cost and scientific validity include also genotoxicity/mutagenicity endpoints. The aim of the review article was to summarize currently available in vitro testing approaches in this field, their regulatory acceptance and recommended combinations for classification of chemicals. A study using the combination of Comet Assay performed on two cell lines and the Chromosomal Aberration test on human peripheral lymphocytes was performed with the aim to predict the genotoxic potential of selected paraben esters, serving as a model chemical group. Parabens are widely used in consumer products as preservatives and have been reported to exhibit inconclusive results in numerous genotoxicity studies. The Comet Assay identified Ethylparaben and Benzylparaben as potentially genotoxic. The Chromosomal Aberration test revealed weak genotoxic potential in case of Ethylparaben and positive genotoxicity in case of Butylparaben, Propylparaben and Isopropylparaben. The main reasons for variability seem to be limited water solubility of parabens, determining their bioavailability at the cellular level, and absence of metabolic activation in the Comet Assay. The results confirmed that the Comet Assay should serve as a screening test and should not be used as a stand-alone method for classification of genotoxicity. The weight of evidence approach in risk assessment should be supported with data generated with the use of human relevant in vitro methods based on cells / tissues of human origin.


Sign in / Sign up

Export Citation Format

Share Document