scholarly journals Identification of Binding Regions of Bilirubin in the Ligand-Binding Pocket of the Peroxisome Proliferator-Activated Receptor-A (PPARalpha)

Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2975
Author(s):  
Darren M. Gordon ◽  
Stephen H. Hong ◽  
Zachary A. Kipp ◽  
Terry D. Hinds

Recent work has shown that bilirubin has a hormonal function by binding to the peroxisome proliferator-activated receptor-α (PPARα), a nuclear receptor that drives the transcription of genes to control adiposity. Our previous in silico work predicted three potential amino acids that bilirubin may interact with by hydrogen bonding in the PPARα ligand-binding domain (LBD), which could be responsible for the ligand-induced function. To further reveal the amino acids that bilirubin interacts with in the PPARα LBD, we harnessed bilirubin’s known fluorescent properties when bound to proteins such as albumin. Our work here revealed that bilirubin interacts with threonine 283 (T283) and alanine 333 (A333) for ligand binding. Mutational analysis of T283 and A333 showed significantly reduced bilirubin binding, reductions of 11.4% and 17.0%, respectively. Fenofibrate competitive binding studies for the PPARα LBD showed that bilirubin and fenofibrate possibly interact with different amino acid residues. Furthermore, bilirubin showed no interaction with PPARγ. This is the first study to reveal the amino acids responsible for bilirubin binding in the ligand-binding pocket of PPARα. Our work offers new insight into the mechanistic actions of a well-known molecule, bilirubin, and new fronts into its mechanisms.

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Irina Krylova ◽  
Fred J Schaufele ◽  
Christophe Guilbert

Abstract Background: Crystallographic structures of nuclear receptor ligand binding domains provide a static model of a receptor stably wrapped around an internalized ligand. Understanding the dynamics of a receptor at different stages of ligand binding has been hampered by the paucity of crystal structures for unliganded nuclear receptors. Molecular dynamic models have been constructed for some nuclear receptors to fill that void. Methods: The molecular simulation docking program MORDOR (MOlecular Recognition with a Driven dynamics OptimizeR)(1) was used to study the structural dynamics of the androgen receptor ligand binding domain (AR LBD) modeled from the static structure of the AR LBD bound to testosterone (T) (PDB ID: 2AM9). The goals of the study were to understand a) the dynamic interaction of the T in its binding pocket, b) AR LBD structural flexibilities that permit T entry/exit from the binding pocket and c) a model of the unliganded AR LBD. Results: Modeling AR LBD structure flexibility over time revealed possible alternative dynamic structures, including those without ligand, overlaid against the canonical nuclear receptor structure. The model dynamically tracks the structural changes as a ligand enters into the ligand binding domain and nestles into the ligand binding pocket. The model predicted the appearance of alpha helices within the AR LBD that transiently fold/unfold during the ligand entry phases. Once in the pocket, the ligand itself remains very dynamic in a still flexible pocket. The model predicted also AR LBD amino acids that sequentially interact with the ligand during its dynamic entry into the AR LBD. Intriguingly, those AR amino acids include those mutated in castration-resistant prostate tumors that continue to grow during androgen suppression therapy. Functional studies showed those mutant ARs had a primary consequence of enhancing response to lower level T, and other androgens, consistent with their role in creating a higher affinity AR that can scavenge low-level androgens in an androgen-suppressed patient. Conclusions: The molecular model of T binding to the AR LBD suggests a degree of structural dynamism not evident in the crystallographic structures commonly associated with nuclear receptors. Some AR mutations activating prostate tumor growth may do so by impacting androgen entry/exit, rather than by altering androgen fit into the ligand binding pocket. Reference: (1) Guilbert C, James TL (2008) J Chem Inf Model. 2008 48(6): 1257-1268. doi: 10.1021/ci8000327


2009 ◽  
Vol 85 (2) ◽  
pp. 485-493 ◽  
Author(s):  
Mònica Aguilà ◽  
Darwin Toledo ◽  
Margarita Morillo ◽  
Marta Dominguez ◽  
Belén Vaz ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3571-3571
Author(s):  
Fadi T. Khasawneh ◽  
Jin-Sheng Huang ◽  
Joseph W. Turek ◽  
Guy C. Le Breton

Abstract Despite the well-documented involvement of thromboxane A2 receptor (TPR) signaling in the pathogenesis of thrombotic diseases, there are currently no rationally-designed antagonists available for clinical use. To a large extent this derives from a lack of knowledge regarding the topography of the TPR ligand binding pocket. On this basis, the purpose of the current study was to identify the specific amino acid residues in the TPR protein which regulate ligand coordination and binding. The sites selected for mutation reside within or in close proximity to a region we previously defined as a TPR ligand binding site, i.e., the C-terminus of the second extracellular loop and the leading edge of the fifth transmembrane domain. Mutation of these residues caused varying effects on the TPR-ligand coordination process. Specifically, the D193A mutant lacked both SQ29,548 (antagonist) binding and U46619 (agonist)-induced calcium mobilization. Three other mutants, F184Y, T186A and S191T, discriminated between SQ29,548 binding and the U46619-mediated functional response. Furthermore, these mutants also revealed a divergence in the binding of two structurally different antagonists, SQ29,548 and BM13.505. Conversely, two separate mutants which exhibited SQ29,548 binding activity yielded either a normal (F196Y) or reduced (S201T) U46619 response. Finally, mutation of other residues directly adjacent to those described above, e.g., E190A and F200A, produced no detectable effects on either SQ29,548 binding or the U46619-induced functional response. In summary, these results identify key amino acids involved in TPR ligand coordination and demonstrate that TPR-specific ligands do not necessarily interact with the same residues in the ligand-binding pocket.


2003 ◽  
Vol 31 (3) ◽  
pp. 573-582 ◽  
Author(s):  
FM Rogerson ◽  
YZ Yao ◽  
BJ Smith ◽  
N Dimopoulos ◽  
PJ Fuller

Spironolactone is a mineralocorticoid receptor (MR) antagonist in clinical use. The compound has a very low affinity for the glucocorticoid receptor (GR). Determinants of binding specificity of spironolactone to the MR were investigated using chimeras created between the ligand-binding domains (LBDs) of the MR and the GR. These chimeras had previously been used to investigate aldosterone binding specificity to the MR. Spironolactone was able to compete strongly for [(3)H]-aldosterone and [(3)H]-dexamethasone binding to a chimera containing amino acids 804-874 of the MR, and weakly for [(3)H]-dexamethasone binding to a chimera containing amino acids 672-803 of the MR. Amino acids 804-874 were also critical for aldosterone binding specificity. Models of the MR LBD bound to aldosterone and spironolactone were created based on the crystal structure of the progesterone receptor LBD. The ligand-binding pocket of the MR LBD model consisted of 23 amino acids and was predominantly hydrophobic in nature. Analysis of this model in light of the experimental data suggested that spironolactone binding specificity is not governed by amino acids in the ligand-binding pocket.


2020 ◽  
Vol 33 (4) ◽  
pp. 612-623 ◽  
Author(s):  
Abu I. M. S. Ud-Din ◽  
Mohammad F. Khan ◽  
Anna Roujeinikova

Motile bacteria follow gradients of nutrients or other environmental cues. Many bacterial chemoreceptors that sense exogenous amino acids contain a double Cache (dCache; calcium channels and chemotaxis receptors) ligand-binding domain (LBD). A growing number of studies suggest that broad-specificity dCache-type receptors that sense more than one amino acid are common. Here, we present an investigation into the mechanism by which the dCache LBD of the chemoreceptor CtaA from a plant growth–promoting rhizobacterium, Pseudomonas fluorescens, recognizes several chemically distinct amino acids. We established that amino acids that signal by directly binding to the CtaA LBD include ones with aliphatic (l-alanine, l-proline, l-leucine, l-isoleucine, l-valine), small polar (l-serine), and large charged (l-arginine) side chains. We determined the structure of CtaA LBD in complex with different amino acids, revealing that its ability to recognize a range of structurally and chemically distinct amino acids is afforded by its easily accessible plastic pocket, which can expand or contract according to the size of the ligand side chain. The amphipathic character of the pocket enables promiscuous interactions with both polar and nonpolar amino acids. The results not only clarify the means by which various amino acids are recognized by CtaA but also reveal that a conserved mobile lid over the ligand-binding pocket adopts the same conformation in all complexes, consistent with this being an important and invariant part of the signaling mechanism.


2015 ◽  
Vol 90 (2) ◽  
pp. 1062-1069 ◽  
Author(s):  
Dana N. Raugi ◽  
Robert A. Smith ◽  
Geoffrey S. Gottlieb ◽  

ABSTRACTProtease is essential for retroviral replication, and protease inhibitors (PI) are important for treating HIV infection. HIV-2 exhibits intrinsic resistance to most FDA-approved HIV-1 PI, retaining clinically useful susceptibility only to lopinavir, darunavir, and saquinavir. The mechanisms for this resistance are unclear; although HIV-1 and HIV-2 proteases share just 38 to 49% sequence identity, all critical structural features of proteases are conserved. Structural studies have implicated four amino acids in the ligand-binding pocket (positions 32, 47, 76, and 82). We constructed HIV-2ROD9molecular clones encoding the corresponding wild-type HIV-1 amino acids (I32V, V47I, M76L, and I82V) either individually or together (clone PRΔ4) and compared the phenotypic sensitivities (50% effective concentration [EC50]) of mutant and wild-type viruses to nine FDA-approved PI. Single amino acid replacements I32V, V47I, and M76L increased the susceptibility of HIV-2 to multiple PI, but no single change conferred class-wide sensitivity. In contrast, clone PRΔ4 showed PI susceptibility equivalent to or greater than that of HIV-1 for all PI. We also compared crystallographic structures of wild-type HIV-1 and HIV-2 proteases complexed with amprenavir and darunavir to models of the PRΔ4 enzyme. These models suggest that the amprenavir sensitivity of PRΔ4 is attributable to stabilizing enzyme-inhibitor interactions in the P2 and P2′ pockets of the protease dimer. Together, our results show that the combination of four amino acid changes in HIV-2 protease confer a pattern of PI susceptibility comparable to that of HIV-1, providing a structural rationale for intrinsic HIV-2 PI resistance and resolving long-standing questions regarding the determinants of differential PI susceptibility in HIV-1 and HIV-2.IMPORTANCEProteases are essential for retroviral replication, and HIV-1 and HIV-2 proteases share a great deal of structural similarity. However, only three of nine FDA-approved HIV-1 protease inhibitors (PI) are active against HIV-2. The underlying reasons for intrinsic PI resistance in HIV-2 are not known. We examined the contributions of four amino acids in the ligand-binding pocket of the enzyme that differ between HIV-1 and HIV-2 by constructing HIV-2 clones encoding the corresponding HIV-1 amino acids and testing the PI susceptibilities of the resulting viruses. We found that the HIV-2 clone containing all four changes (PRΔ4) was as susceptible as HIV-1 to all nine PI. We also modeled the PRΔ4 enzyme structure and compared it to existing crystallographic structures of HIV-1 and HIV-2 proteases complexed with amprenavir and darunavir. Our findings demonstrate that four positions in the ligand-binding cleft of protease are the primary cause of HIV-2 PI resistance.


1997 ◽  
Vol 52 (5) ◽  
pp. 807-814 ◽  
Author(s):  
Michael T. Greenwood ◽  
Nedim Hukovic ◽  
Ujendra Kumar ◽  
Rosemarie Panetta ◽  
Siv A. Hjorth ◽  
...  

2002 ◽  
Vol 366 (3) ◽  
pp. 901-910 ◽  
Author(s):  
Philippe THUILLIER ◽  
Alan R. BRASH ◽  
James P. KEHRER ◽  
Julie B. STIMMEL ◽  
Lisa M. LEESNITZER ◽  
...  

Lipoxygenase (LOX) metabolites from arachidonic acid and linoleic acid have been implicated in atherosclerosis, inflammation, keratinocyte differentiation and tumour progression. We previously showed that peroxisome proliferator-activated receptors (PPARs) play a role in keratinocyte differentiation and that the PPARα ligand 8S-hydroxyeicosatetraenoic acid is important in this process. We hypothesized that blocking LOX activity would block PPAR-mediated keratinocyte differentiation. Three LOX inhibitors, nordihydroguaiaretic acid, quercetin and morin, were studied for their effects on primary keratinocyte differentiation and PPAR activity. All three LOX inhibitors blocked calcium-induced expression of the differentiation marker keratin 1. In addition, activity of a PPAR-responsive element was inhibited in the presence of all three inhibitors, and this effect was mediated primarily through PPARα and PPARγ. LOX inhibitors decreased the activity of a chimaeric PPAR-Gal4-ligand-binding domain reporter system and this effect was reversed by addition of PPAR ligands. Ligand-binding studies revealed that the LOX inhibitors bind directly to PPARs and demonstrate a novel mechanism for these inhibitors in altering PPAR-mediated gene expression.


Sign in / Sign up

Export Citation Format

Share Document