scholarly journals Aged Brains Express Less Melanocortin Receptors, Which Correlates with Age-Related Decline of Cognitive Functions

Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6266
Author(s):  
Yang Zhou ◽  
Monica K. Chawla ◽  
Jose L. Rios-Monterrosa ◽  
Lingzhi Wang ◽  
Marc A. Zempare ◽  
...  

Brain G-protein coupled receptors have been hypothesized to be potential targets for maintaining or restoring cognitive function in normal aged individuals or in patients with neurodegenerative disease. A number of recent reports suggest that activation of melanocortin receptors (MCRs) in the brain can significantly improve cognitive functions of normal rodents and of different rodent models of the Alzheimer’s disease. However, the potential impact of normative aging on the expression of MCRs and their potential roles for modulating cognitive function remains to be elucidated. In the present study, we first investigated the expression of these receptors in six different brain regions of young (6 months) and aged (23 months) rats following assessment of their cognitive status. Correlation analysis was further performed to reveal potential contributions of MCR subtypes to spatial learning and memory. Our results revealed statistically significant correlations between the expression of several MCR subtypes in the frontal cortex/hypothalamus and the hippocampus regions and the rats’ performance in spatial learning and memory only in the aged rats. These findings support the hypothesis that aging has a direct impact on the expression and function of MCRs, establishing MCRs as potential drug targets to alleviate aging-induced decline of cognitive function.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dan Song ◽  
Yaohua Chen ◽  
Cheng Chen ◽  
Lili Chen ◽  
Oumei Cheng

Abstract Purpose and background Previous studies have suggested that promoting endogenous neurogenesis has great significance for the recovery of cognitive dysfunction caused by cerebral ischemia (CI). Pharmacological inhibition of GABAB receptor can enhance neurogenesis in adult healthy and depressed mice. In the study, we intended to investigate the effects of GABAB receptor antagonists on cognitive function and hippocampal neurogenesis in mice following CI. Methods Adult mice were subjected to bilateral common carotid artery occlusion (BCCAO) for 20 min to induce CI and treated with CGP52432 (antagonist of GABAB receptor, CGP, 10 mg/kg intraperitoneal injection) starting 24 h after CI. The Morris water maze test was performed to test spatial learning and memory at day 28. Immunofluorescence was applied to detect neurogenesis in the DG region at day 14 and 28. In in vitro experiments, cell proliferation was detected by CCK8 and immunofluorescence, and the expression of cAMP/CREB signaling pathway-related proteins was detected by ELISA assay and Western blot. Results CGP significantly improved spatial learning and memory disorders caused by CI, and it enhanced the proliferation of neural stem cells (NSCs), the number of immature neurons, and the differentiation from newborn cells to neurons. In vitro experiments further confirmed that CGP dose-dependently enhanced the cell viability of NSCs, and immunofluorescence staining showed that CGP promoted the proliferation of NSCs. In addition, treatment with CGP increased the expression of cAMP, PKA, and pCREB in cultured NSCs. Conclusion Inhibition of GABAB receptor can effectively promote hippocampal neurogenesis and improve spatial learning and memory in adult mice following CI.


2005 ◽  
Vol 25 (12) ◽  
pp. 1586-1595 ◽  
Author(s):  
Olof Bendel ◽  
Tjerk Bueters ◽  
Mia von Euler ◽  
Sven Ove Ögren ◽  
Johan Sandin ◽  
...  

The pyramidal neurons of the hippocampal CA1 region are essential for cognitive functions such as spatial learning and memory, and are selectively destroyed after cerebral ischemia. To analyze whether degenerated CA1 neurons are replaced by new neurons and whether such regeneration is associated with amelioration in learning and memory deficits, we have used a rat global ischemia model that provides an almost complete disappearance (to approximately 3% of control) of CA1 neurons associated with a robust impairment in spatial learning and memory at two weeks after ischemia. We found that transient cerebral ischemia can evoke a massive formation of new neurons in the CA1 region, reaching approximately 40% of the original number of neurons at 90 days after ischemia (DAI). Co-localization of the mature neuronal marker neuronal nuclei with 5-bromo-2'-deoxyuridine in CA1 confirmed that neurogenesis indeed had occurred after the ischemic insult. Furthermore, we found increased numbers of cells expressing the immature neuron marker polysialic acid neuronal cell adhesion molecule in the adjacent lateral periventricular region, suggesting that the newly formed neurons derive from this region. The reappearance of CA1 neurons was associated with a recovery of ischemia-induced impairments in spatial learning and memory at 90 DAI, suggesting that the newly formed CA1 neurons restore hippocampal CA1 function. In conclusion, these results show that the brain has an endogenous capacity to form new nerve cells after injury, which correlates with a restoration of cognitive functions of the brain.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Nu Zhang ◽  
Zhiyi Liao ◽  
Pinwen Wu ◽  
Hao Fang ◽  
Guoping Cai

It has been confirmed that repeated application of propofol, as an intravenous and short-fast-acting anesthetic, in neonatal animals or humans may produce long-term deficits in cognitive functions. With the aim of explaining the neurotoxic effects of repeated administration of propofol on neonatal rat pups from P7 to P9 especially from an epigenetic perspective, the present study used the Morris water maze to detect cognitive deficits in spatial learning and memory, Sequenom methylation on the CpG island located in the promoter region of epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) to assess the methylation level of this region, and Western blot to measure the expression of EFEMP1, TIMP-3, and MMP-9. As the results have shown, repeated propofol administration on neonatal rats caused significant systemic growth retardation, impairment of spatial learning and memory, and hypermethylation of the CpG sites in the promoter region of EFEMP1 accompanied by lower expression of EFEMP1 and TIMP-3 and enhanced expression of MMP-9. These data suggest that repeated propofol administration in neonatal rats may generate hypermethylation in the promoter region of EFEMP1 which results in downregulation of the expression of EFEMP1 and tissue inhibitor of metalloproteinase-3 (TIMP-3) but upregulation of the expression of matrix metalloproteinase-9 (MMP-9), which together may affect the stability of ECM to hamper the development of the central nervous system and therefore lead to deficits in cognitive functions.


2021 ◽  
Vol 14 ◽  
Author(s):  
Zhan-Qiang Zhuang ◽  
Zhe-Zhe Zhang ◽  
Yue-Ming Zhang ◽  
He-Hua Ge ◽  
Shi-Yu Sun ◽  
...  

Studies have shown that gestational inflammation accelerates age-related memory impairment in mother mice. An enriched environment (EE) can improve age-related memory impairment, whereas mitochondrial dysfunction has been implicated in the pathogenesis of brain aging. However, it is unclear whether an EE can counteract the accelerated age-related memory impairment induced by gestational inflammation and whether this process is associated with the disruption of mitochondrial quality control (MQC) processes. In this study, CD-1 mice received daily intraperitoneal injections of lipopolysaccharide (LPS, 50 μg/kg) or normal saline (CON group) during gestational days 15–17 and were separated from their offspring at the end of normal lactation. The mothers that received LPS were divided into LPS group and LPS plus EE (LPS-E) treatment groups based on whether the mice were exposed to an EE until the end of the experiment. At 6 and 18 months of age, the Morris water maze test was used to evaluate spatial learning and memory abilities. Quantitative reverse transcription polymerase chain reaction and Western blot were used to measure the messenber RNA (mRNA) and protein levels of MQC-related genes in the hippocampus, respectively. The results showed that all the aged (18 months old) mice underwent a striking decline in spatial learning and memory performances and decreased mRNA/protein levels related to mitochondrial dynamics (Mfn1/Mfn2, OPA1, and Drp1), biogenesis (PGC-1α), and mitophagy (PINK1/parkin) in the hippocampi compared with the young (6 months old) mice. LPS treatment exacerbated the decline in age-related spatial learning and memory and enhanced the reduction in the mRNA and protein levels of MQC-related genes but increased the levels of PGC-1α in young mice. Exposure to an EE could alleviate the accelerated decline in age-related spatial learning and memory abilities and the accelerated changes in MQC-related mRNA or protein levels resulting from LPS treatment, especially in aged mice. In conclusion, long-term exposure to an EE can counteract the accelerated age-related spatial cognition impairment modulated by MQC in CD-1 mother mice that experience inflammation during pregnancy.


Lipids ◽  
2014 ◽  
Vol 49 (9) ◽  
pp. 855-869 ◽  
Author(s):  
Nursiati Mohamad Taridi ◽  
Nazirah Abd Rani ◽  
Azian Abd Latiff ◽  
Wan Zurinah Wan Ngah ◽  
Musalmah Mazlan

2020 ◽  
Author(s):  
Kazunori Sasaki ◽  
Noelia Geribaldi-Doldan ◽  
Qingqing Wu ◽  
Julie Davies ◽  
Francis G. Szele ◽  
...  

Abstract Background Much attention has recently focused on nutraceuticals which are widely used to promote health. In particular, nutraceuticals with minimal side effects have been developed for preventing or treating neurological diseases such as Alzheimer’s disease (AD). The present study was conducted to investigate the potential effect on neural development and function of the microalgae Aurantiochytrium sp. as a nutraceutical. Methods To test the neuroprotection of ethanol extract of Aurantiochytrium (EEA) and n-Hex layer of EEA (HEEA), amyloid-beta (Aβ)-stimulated SH-SY5Y cells was used for in vitro AD model. We then assessed the enhancement of neurogenesis of EEA and HEEA using murine ex vivo neurospheres. We also administered EEA or HEEA to SAMP8 mice, a non-transgenic strain with accelerated aging and Alzheimer’s-like memory loss for evaluation of spatial learning and memory using MWM test. Finally, we performed immunohistochemical analysis using mice brain fed with EEA for assessment of neurogenesis. Results Pre-treatment of SH-SY5Y cells with EEA or the squalene-rich fraction of EEA, n-Hex layer (HEEA), ameliorated Aβ-induced cytotoxicity. Interestingly, only EEA-treated cells showed a significant increase in cell metabolism and intracellular ATP production. Moreover, EEA treatment significantly increased the number of neurospheres, whilst HEEA treatment significantly increased the number of β-III-tubulin + young neurons and GFAP + astrocytes. SAMP8 mice were given 50 mg/kg EEA or HEEA orally for 30 days. Learning ability was assessed in the Morris water maze test. EEA and HEEA decreased escape latency time in SAMP8 mice, indicating improved memory. To detect activated stem cells and newborn neurons, we administered BrdU for 9 days and measured BrdU + cells in the dentate gyrus, a neurogenic stem cell niche of the hippocampus. In SAMP8 mice, EEA rapidly and significantly increased the number of BrdU + GFAP + stem cells as well as their progeny, BrdU + NeuN + mature neurons. Conclusions Our data in aggregate indicate that EEA and its constituents could be developed into a nutraceutical for promoting brain health and function against some age-related diseases including neurodegenerative desease, particularly AD.


Sign in / Sign up

Export Citation Format

Share Document