scholarly journals Reappearance of Hippocampal CA1 Neurons after Ischemia is Associated with Recovery of Learning and Memory

2005 ◽  
Vol 25 (12) ◽  
pp. 1586-1595 ◽  
Author(s):  
Olof Bendel ◽  
Tjerk Bueters ◽  
Mia von Euler ◽  
Sven Ove Ögren ◽  
Johan Sandin ◽  
...  

The pyramidal neurons of the hippocampal CA1 region are essential for cognitive functions such as spatial learning and memory, and are selectively destroyed after cerebral ischemia. To analyze whether degenerated CA1 neurons are replaced by new neurons and whether such regeneration is associated with amelioration in learning and memory deficits, we have used a rat global ischemia model that provides an almost complete disappearance (to approximately 3% of control) of CA1 neurons associated with a robust impairment in spatial learning and memory at two weeks after ischemia. We found that transient cerebral ischemia can evoke a massive formation of new neurons in the CA1 region, reaching approximately 40% of the original number of neurons at 90 days after ischemia (DAI). Co-localization of the mature neuronal marker neuronal nuclei with 5-bromo-2'-deoxyuridine in CA1 confirmed that neurogenesis indeed had occurred after the ischemic insult. Furthermore, we found increased numbers of cells expressing the immature neuron marker polysialic acid neuronal cell adhesion molecule in the adjacent lateral periventricular region, suggesting that the newly formed neurons derive from this region. The reappearance of CA1 neurons was associated with a recovery of ischemia-induced impairments in spatial learning and memory at 90 DAI, suggesting that the newly formed CA1 neurons restore hippocampal CA1 function. In conclusion, these results show that the brain has an endogenous capacity to form new nerve cells after injury, which correlates with a restoration of cognitive functions of the brain.

2013 ◽  
Vol 41 (06) ◽  
pp. 1329-1341 ◽  
Author(s):  
Bo Yin ◽  
Hui Liang ◽  
Yigang Chen ◽  
Ketan Chu ◽  
Li Huang ◽  
...  

Extracts of Ginkgo biloba have been used in traditional medicines for centuries, and have potential for clinical applications in cerebral ischemia/reperfusion injury. However, standardized extracts have proven protective only as pre-treatments, and the major mechanisms of action remain unclear. We explored the potential of the novel extract EGB1212, which meets the United States Pharmacopeia (USP) 31 standardization criteria for pharmaceutical use, as a post-treatment after global cerebral ischemia/reperfusion (GCI/R) injury in a rat model. The pre-treated group was administered EGB1212 for 7 d prior to common carotid artery occlusion (i.e., ischemia, for 20 min). Post-treated rats received the same but starting 2 h after ischemia and continuing for 7 d. Seven days after GCI/R, brains of each group were processed for H&E staining of hippocampal CA1 neurons. Remaining rats underwent the Morris water maze and Y-maze tests of spatial learning and memory, beginning eight days after reperfusion. To assess hippocampal autophagy, light chain (LC)-3-I/LC3-II and Akt/pAkt were determined via a Western blot of rat hippocampi harvested 12, 24, or 72 h after reperfusion. EGB1212 pre- and post-treatments both improved neuronal survival and spatial learning and memory functions. Pre-treatment effectively reduced LC3-II levels and post-treatment resulted in significantly elevated pAkt levels. We conclude that EGB1212 exerted significant neuroprotection in GCI/R in both preventative and post-treatment settings. This extract shows great potential for clinical applications.


Author(s):  
Yang Gao ◽  
Jie Zheng ◽  
Tao Jiang ◽  
Guilin Pi ◽  
Fei Sun ◽  
...  

Intracellular deposition of hyperphosphorylated tau has been reported in the brain of epilepsy patients, but its contribution to epileptic seizures and the association with spatial cognitive functions remain unclear. Here, we found that repeated optogenetic stimulation of the excitatory neurons in ventral hippocampal CA1 subset could induce a controllable epileptic seizure in mice. Simultaneously, the mice showed spatial learning and memory deficits with a prominently elevated total tau and phospho-tau levels in the brain. Importantly, selective facilitating tau degradation by using a novel designed proteolysis-targeting chimera named C4 could effectively ameliorate the epileptic seizures with remarkable restoration of neuronal firing activities and improvement of spatial learning and memory functions. These results confirm that abnormal tau accumulation plays a pivotal role in the epileptic seizures and the epilepsy-associated spatial memory impairments, which provides new molecular target for the therapeutics.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dan Song ◽  
Yaohua Chen ◽  
Cheng Chen ◽  
Lili Chen ◽  
Oumei Cheng

Abstract Purpose and background Previous studies have suggested that promoting endogenous neurogenesis has great significance for the recovery of cognitive dysfunction caused by cerebral ischemia (CI). Pharmacological inhibition of GABAB receptor can enhance neurogenesis in adult healthy and depressed mice. In the study, we intended to investigate the effects of GABAB receptor antagonists on cognitive function and hippocampal neurogenesis in mice following CI. Methods Adult mice were subjected to bilateral common carotid artery occlusion (BCCAO) for 20 min to induce CI and treated with CGP52432 (antagonist of GABAB receptor, CGP, 10 mg/kg intraperitoneal injection) starting 24 h after CI. The Morris water maze test was performed to test spatial learning and memory at day 28. Immunofluorescence was applied to detect neurogenesis in the DG region at day 14 and 28. In in vitro experiments, cell proliferation was detected by CCK8 and immunofluorescence, and the expression of cAMP/CREB signaling pathway-related proteins was detected by ELISA assay and Western blot. Results CGP significantly improved spatial learning and memory disorders caused by CI, and it enhanced the proliferation of neural stem cells (NSCs), the number of immature neurons, and the differentiation from newborn cells to neurons. In vitro experiments further confirmed that CGP dose-dependently enhanced the cell viability of NSCs, and immunofluorescence staining showed that CGP promoted the proliferation of NSCs. In addition, treatment with CGP increased the expression of cAMP, PKA, and pCREB in cultured NSCs. Conclusion Inhibition of GABAB receptor can effectively promote hippocampal neurogenesis and improve spatial learning and memory in adult mice following CI.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Nu Zhang ◽  
Zhiyi Liao ◽  
Pinwen Wu ◽  
Hao Fang ◽  
Guoping Cai

It has been confirmed that repeated application of propofol, as an intravenous and short-fast-acting anesthetic, in neonatal animals or humans may produce long-term deficits in cognitive functions. With the aim of explaining the neurotoxic effects of repeated administration of propofol on neonatal rat pups from P7 to P9 especially from an epigenetic perspective, the present study used the Morris water maze to detect cognitive deficits in spatial learning and memory, Sequenom methylation on the CpG island located in the promoter region of epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) to assess the methylation level of this region, and Western blot to measure the expression of EFEMP1, TIMP-3, and MMP-9. As the results have shown, repeated propofol administration on neonatal rats caused significant systemic growth retardation, impairment of spatial learning and memory, and hypermethylation of the CpG sites in the promoter region of EFEMP1 accompanied by lower expression of EFEMP1 and TIMP-3 and enhanced expression of MMP-9. These data suggest that repeated propofol administration in neonatal rats may generate hypermethylation in the promoter region of EFEMP1 which results in downregulation of the expression of EFEMP1 and tissue inhibitor of metalloproteinase-3 (TIMP-3) but upregulation of the expression of matrix metalloproteinase-9 (MMP-9), which together may affect the stability of ECM to hamper the development of the central nervous system and therefore lead to deficits in cognitive functions.


2010 ◽  
Vol 17 (2) ◽  
pp. 119-127 ◽  
Author(s):  
Yutaka Oomura ◽  
Shuji Aou ◽  
Kouji Fukunaga

Sign in / Sign up

Export Citation Format

Share Document