scholarly journals Synthesis, Antifungal Activity, 3D-QSAR, and Molecular Docking Study of Novel Menthol-Derived 1,2,4-Triazole-Thioether Compounds

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6948
Author(s):  
Mei Huang ◽  
Wen-Gui Duan ◽  
Gui-Shan Lin ◽  
Bao-Yu Li

A series of novel menthol derivatives containing 1,2,4-triazole-thioether moiety were designed, synthesized, characterized structurally, and evaluated biologically to explore more potent natural product-based antifungal agents. The bioassay results revealed that at 50 μg/mL, some of the target compounds exhibited good inhibitory activity against the tested fungi, especially against Physalospora piricola. Compounds 5b (R = o-CH3 Ph), 5i (R = o-Cl Ph), 5v (R = m, p-OCH3 Ph) and 5x (R = α-furyl) had inhibition rates of 93.3%, 79.4%, and 79.4%, respectively, against P. piricola, much better than that of the positive control chlorothalonil. Compounds 5v (R = m, p-OCH3 Ph) and 5g (R = o-Cl Ph) held inhibition rates of 82.4% and 86.5% against Cercospora arachidicola and Gibberella zeae, respectively, much better than that of the commercial fungicide chlorothalonil. Compound 5b (R = o-CH3 Ph) displayed antifungal activity of 90.5% and 83.8%, respectively, against Colleterichum orbicalare and Fusarium oxysporum f. sp. cucumerinum. Compounds 5m (R = o-I Ph) had inhibition rates of 88.6%, 80.0%, and 88.0%, respectively, against F.oxysporum f. sp. cucumerinu, Bipolaris maydis and C. orbiculare. Furthermore, compound 5b (R = o-CH3 Ph) showed the best and broad-spectrum antifungal activity against all the tested fungi. To design more effective antifungal compounds against P. piricola, 3D-QSAR analysis was performed using the CoMFA method, and a reasonable 3D-QSAR model (r2 = 0.991, q2= 0.514) was established. The simulative binding pattern of the target compounds with cytochrome P450 14α-sterol demethylase (CYP51) was investigated by molecular docking.

2021 ◽  
Vol 9 ◽  
Author(s):  
Xiu Wang ◽  
Wengui Duan ◽  
Guishan Lin ◽  
Baoyu Li ◽  
Ming Chen ◽  
...  

Cytochrome bc1 complex is an important component of cellular respiratory chain, and it is also an important target enzyme to inhibit the growth of plant pathogens. Using cytochrome bc1 complex as the target enzyme, twenty-three novel nopol-based 1,2,4-triazole-thioether compounds were designed and synthesized from natural preponderant resource β-pinene, and their structures were confirmed by FT-IR, NMR, ESI-MS and elemental analysis. The in vitro antifungal activity of the target compounds 5a-5w was preliminarily evaluated against eight plant pathogens at the concentration of 50 µg/ml. The bioassay results showed that the target compounds exhibited the best antifungal activity against Physalospora piricola, in which compounds 5b (R= o-CH3 Ph), 5e (R= o-OCH3 Ph), 5h (R= o-F Ph), 5m (R= o-Br Ph), 5o (R= m,m-OCH3 Ph), and 5r (R= p-OH Ph) had inhibition rates of 91.4, 83.3, 86.7, 83.8, 91.4 and 87.3%, respectively, much better than that of the positive control chlorothalonil. Also, compound 5a (R= Ph) had inhibition rate of 87.9% against Rhizoeotnia solani, and compound 5b (R= o-CH3 Ph) had inhibition rates of 87.6 and 89% against Bipolaris maydis and Colleterichum orbicala, respectively. In order to develop novel and promising antifungal compounds against P. piricola, the analysis of three-dimensional quantitative structure-activity relationship (3D-QSAR) was carried out using the CoMFA method on the basis of their antifungal activity data, and a reasonable and effective 3D-QSAR model (r2 = 0.944, q2 = 0.685) has been established. In addition, the theoretical study of molecular docking revealed that the target compounds could bind to and interact with the site of cytochrome bc1 complex.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1708
Author(s):  
Ming Chen ◽  
Wen-Gui Duan ◽  
Gui-Shan Lin ◽  
Zhong-Tian Fan ◽  
Xiu Wang

A series of novel nopol derivatives bearing the 1,3,4-thiadiazole-thiourea moiety were designed and synthesized by multi-step reactions in search of potent natural product-based antifungal agents. Their structures were confirmed by FT-IR, NMR, ESI-MS, and elemental analysis. Antifungal activity of the target compounds was preliminarily evaluated by in vitro methods against Fusarium oxysporum f. sp. cucumerinum, Cercospora arachidicola, Physalospora piricola, Alternaria solani, Gibberella zeae, Rhizoeotnia solani, Bipolaris maydis, and Colleterichum orbicalare at 50 µg/mL. All the target compounds exhibited better antifungal activity against P. piricola, C. arachidicola, and A. solani. Compound 6j (R = m, p-Cl Ph) showed the best broad-spectrum antifungal activity against all the tested fungi. Compounds 6c (R = m-Me Ph), 6q (R = i-Pr), and 6i (R = p-Cl Ph) had inhibition rates of 86.1%, 86.1%, and 80.2%, respectively, against P. piricola, much better than that of the positive control chlorothalonil. Moreover, compounds 6h (R = m-Cl Ph) and 6n (R = o-CF3 Ph) held inhibition rates of 80.6% and 79.0% against C. arachidicola and G. zeae, respectively, much better than that of the commercial fungicide chlorothalonil. In order to design more effective antifungal compounds against A. solani, analysis of the three-dimensional quantitative structure–activity relationship (3D-QSAR) was carried out using the CoMFA method, and a reasonable and effective 3D-QSAR model (r2 = 0.992, q2 = 0.753) has been established. Furthermore, some intriguing structure–activity relationships were found and are discussed by theoretical calculation.


2017 ◽  
Vol 11 (1) ◽  
pp. 127-137 ◽  
Author(s):  
Amit Rai ◽  
Mohamed H. Aboumanei ◽  
Suraj P. Verma ◽  
Sachidanand Kumar ◽  
Vinit Raj

Introduction: Ebola Virus Disease (EVD) is caused by Ebola virus, which is often accompanied by fatal hemorrhagic fever upon infection in humans. This virus has caused the majority of deaths in human. There are no proper vaccinations and medications available for EVD. It is pivoting the attraction of scientist to develop the potent vaccination or novel lead to inhibit Ebola virus. Methods & Materials: In the present study, we developed 3D-QSAR and the pharmacophoric model from the previous reported potent compounds for the Ebola virus. Results & Discussion: Results & Discussion: The pharmacophoric model AAAP.116 was generated with better survival value and selectivity. Moreover, the 3D-QSAR model also showed the best r2 value 0.99 using PLS factor. Thereby, we found the higher F value, which demonstrated the statistical significance of both the models. Furthermore, homological modeling and molecular docking study were performed to analyze the affinity of the potent lead. This showed the best binding energy and bond formation with targeted protein. Conclusion: Finally, all the results of this study concluded that 3D-QSAR and Pharmacophore models may be helpful to search potent lead for EVD treatment in future.


2013 ◽  
Vol 1045 ◽  
pp. 35-41 ◽  
Author(s):  
Yongjun Ji ◽  
Mao Shu ◽  
Yong Lin ◽  
Yuanqiang Wang ◽  
Rui Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document