scholarly journals Molecular Docking and Dynamics Investigations for Identifying Potential Inhibitors of the 3-Chymotrypsin-like Protease of SARS-CoV-2: Repurposing of Approved Pyrimidonic Pharmaceuticals for COVID-19 Treatment

Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7458
Author(s):  
Amin Osman Elzupir

This study demonstrates the inhibitory effect of 42 pyrimidonic pharmaceuticals (PPs) on the 3-chymotrypsin-like protease of SARS-CoV-2 (3CLpro) through molecular docking, molecular dynamics simulations, and free binding energies by means of molecular mechanics–Poisson Boltzmann surface area (MM-PBSA) and molecular mechanics–generalized Born surface area (MM-GBSA). Of these tested PPs, 11 drugs approved by the US Food and Drug Administration showed an excellent binding affinity to the catalytic residues of 3CLpro of His41 and Cys145: uracil mustard, cytarabine, floxuridine, trifluridine, stavudine, lamivudine, zalcitabine, telbivudine, tipiracil, citicoline, and uridine triacetate. Their percentage of residues involved in binding at the active sites ranged from 56 to 100, and their binding affinities were in the range from −4.6 ± 0.14 to −7.0 ± 0.19 kcal/mol. The molecular dynamics as determined by a 200 ns simulation run of solvated docked complexes confirmed the stability of PP conformations that bound to the catalytic dyad and the active sites of 3CLpro. The free energy of binding also demonstrates the stability of the PP–3CLpro complexes. Citicoline and uridine triacetate showed free binding energies of −25.53 and −7.07 kcal/mol, respectively. Therefore, I recommend that they be repurposed for the fight against COVID-19, following proper experimental and clinical validation.

2021 ◽  
Author(s):  
Eldar Muhtar ◽  
Mengyang Wang ◽  
Haimei Zhu

Aim: SARS-CoV-2 caused more than 3.8 million deaths according to the WHO. In this urgent circumstance, we aimed at screening out potential inhibitors targeting the main protease of SARS-CoV-2. Materials & methods: An in-house carboline and quinoline database including carboline, quinoline and their derivatives was established. A virtual screening in carboline and quinoline database, 50 ns molecular dynamics simulations and molecular mechanics Poisson−Boltzmann surface area calculations were carried out. Results: The top 12 molecules were screened out preliminarily. The molecular mechanics Poisson−Boltzmann surface area ranking showed that p59_7m, p12_7e, p59_7k stood out with the lowest binding energies of -24.20, -17.98, -17.67 kcal/mol, respectively. Conclusion: The study provides powerful in silico results that indicate the selected molecules are valuable for further evaluation as SARS-CoV-2 main protease inhibitors.


RSC Advances ◽  
2019 ◽  
Vol 9 (24) ◽  
pp. 13868-13877 ◽  
Author(s):  
Jing Xue ◽  
Xiaoqiang Huang ◽  
Yushan Zhu

A quantitative assessment method for computational enzyme design was developed to rank the active designs of cephradine hydrolase based on molecular dynamics simulation.


2019 ◽  
Author(s):  
Rahul Singh ◽  
Vijay Bhardwaj ◽  
Rituraj Purohit

Malaria remains a deadliest disease brought about by Plasmodium species, among one of these species, disease due to Plasmodium falciparum (Pf) is life-threatening. The structures of PfLDH and human LDH are very similar in terms of L-LDH activity, and their biological functions are also equivalent. Therefore, any treatment aiming blocking the functions of PfLDH can affect human LDH. Thus, the main objective of this study is to identify the molecule that exhibits selectivity towards PfLDH without a profound effect on human LDH. In this research, a set of 68 quinolines based molecules were used for molecular docking. From molecular docking, we selected molecules 3j, 4b, 4h, 4m based on their binding affinity, ligand efficiency, lipophilic ligand efficiency, and torsion with selectivity towards PfLDH. The stability of the docked molecules was compared to Chloroquine (reference inhibitor) by applying molecular dynamics simulations and molecular mechanics poisson boltzmann surface area calculations. All the selected molecules showed selectivity for PfLDH with stable dynamic behavior and high binding free energy in comparison to Chloroquine. After examining the molecular mechanics poisson boltzmann surface area ratio results, molecule 3j was reported as a potential and specific inhibitor for PfLDH with a novel mechanism of binding to PfLDH while the remaining molecules 4b, 4h, 4m could further be modified to be used as potent inhibitors against malarial infection.


2021 ◽  
Author(s):  
Junliang Ge ◽  
Bo Wu ◽  
Wenzhuo Yang ◽  
Sheng Zhong ◽  
Yuanyuan Hou ◽  
...  

Abstract Object This study was designed to select ideal lead compounds and preclinical drug candidates with inhibitory effect on c-MET from the drug library (ZINC database).Methods A battery of computer-aided virtual techniques were used to identify possible inhibitors of c-MET. LibDock is applied for structure-based screening followed by ADME (absorption, distribution, metabolic, excretion) and toxicity prediction. Molecular docking was conducted to confirm the binding affinity mechanism between the ligand and c-MET Molecular dynamics simulations were used to assess the stability of ligand-c-MET complexes.Results Two new natural compounds ZINC000005879645 and ZINC000002528509 were found to bind to c-MET in ZINC database, showing higher binding affinity. In addition, they were predicted to have lower rodent carcinogenicity, Ames mutagenicity, developmental toxicity potential, and high tolerance to cytochrome P4502D6. Molecular dynamics simulation shows that ZINC000005879645 and ZINC000002528509 have more favorable potential energies with c-MET, which could exist stably in the natural environment.Conclusion This study suggests that ZINC000005879645 and ZINC000002528509 are ideal latent inhibitors of c-MET targeting. As drug candidates, these two compounds have great security and important implications for the design and improvement of c-MET target drugs.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3171 ◽  
Author(s):  
Vladimir P. Berishvili ◽  
Alexander N. Kuimov ◽  
Andrew E. Voronkov ◽  
Eugene V. Radchenko ◽  
Pradeep Kumar ◽  
...  

Tankyrase enzymes (TNKS), a core part of the canonical Wnt pathway, are a promising target in the search for potential anti-cancer agents. Although several hundreds of the TNKS inhibitors are currently known, identification of their novel chemotypes attracts considerable interest. In this study, the molecular docking and machine learning-based virtual screening techniques combined with the physico-chemical and ADMET (absorption, distribution, metabolism, excretion, toxicity) profile prediction and molecular dynamics simulations were applied to a subset of the ZINC database containing about 1.7 M commercially available compounds. Out of seven candidate compounds biologically evaluated in vitro for their inhibition of the TNKS2 enzyme using immunochemical assay, two compounds have shown a decent level of inhibitory activity with the IC50 values of less than 10 nM and 10 μM. Relatively simple scores based on molecular docking or MM-PBSA (molecular mechanics, Poisson-Boltzmann, surface area) methods proved unsuitable for predicting the effect of structural modification or for accurate ranking of the compounds based on their binding energies. On the other hand, the molecular dynamics simulations and Free Energy Perturbation (FEP) calculations allowed us to further decipher the structure-activity relationships and retrospectively analyze the docking-based virtual screening performance. This approach can be applied at the subsequent lead optimization stages.


1996 ◽  
Vol 61 (10) ◽  
pp. 1405-1431
Author(s):  
Zuzana Gálová ◽  
Tibor Kožár

Conformational analysis was performed for model glycosphingolipid molecules with a view to studying the effect of structural variability of the lipidic part and its flexibility on the saccharide-ceramide linkage. In addition to systematic and random molecular mechanics sampling techniques (the RAMM program), molecular dynamics simulations (Biosym DISCOVER program) were carried out to analyze the conformational energy surface of the model glycolipid molecules. The influence of the structural variability and flexibility of the lipidic part is demonstrated by prediction of the stability of different conformations around the carbohydrate-ceramide linkage. The α2, α1 and Θ1 torsional angles are the most important structural parameters with respect to the carbohydrate-ceramide connection. Two dominant conformations for the saccharide-ceramide linkage were observed, with the α2/α1/Θ1 dihedral angles in the -sc/+ac/ap and -sc/ap/-sc regions. While each of the calculation methods predicts similar flexibility in the α2/α1 space, the flexibility around the Θ1 angle differs considerably, reflecting the parametrization and set-up of the modelling protocol.


2018 ◽  
Vol 22 ◽  
pp. 340-344
Author(s):  
P. A. Karpov ◽  
S. I. Spivak ◽  
O. V. Rayevsky ◽  
O. Yu. Nyporko ◽  
S. P. Ozheredov ◽  
...  

Aim. To determine the features of the ligand-protein interaction of glaziovianin A and human α-, β- and γ-tubulin. Methods. Protein and ligand spatial structure modelling (I-Tasser, Grid), molecular docking (CCDC Gold), molecular dynamics simulation (GROMACS). Results. Using the method of molecular docking in CCDC Gold ligand-protein complexes of glaziovianin A and human α-, β- and γ-tubulin were reconstructed. Studied ligand interactions in GTP/GDP-exchange and colchicine binding sites of different tubulin isotypes. The built ligand-protein complexes were studied using molecular dynamics simulations. Conclusions. Binding of glaziovianin A with human tubulin was confirmed exposing its derivatives as perspective tubulin effectors. The binding energies of ligand-protein interaction confirm higher affinity for β-tubulin molecules, and it was suggested that glazovianin A binding may occur at two alternative sites: GTP/GDP-exchange site and site of colchicine binding. Keywords: tubulin, glaziovianin A, binding, antitumor activity.


Sign in / Sign up

Export Citation Format

Share Document