scholarly journals Biophysical Characterization of Novel DNA Aptamers against K103N/Y181C Double Mutant HIV-1 Reverse Transcriptase

Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 285
Author(s):  
Siriluk Ratanabunyong ◽  
Supaphorn Seetaha ◽  
Supa Hannongbua ◽  
Saeko Yanaka ◽  
Maho Yagi-Utsumi ◽  
...  

The human immunodeficiency virus type-1 Reverse Transcriptase (HIV-1 RT) plays a pivotal role in essential viral replication and is the main target for antiviral therapy. The anti-HIV-1 RT drugs address resistance-associated mutations. This research focused on isolating the potential specific DNA aptamers against K103N/Y181C double mutant HIV-1 RT. Five DNA aptamers showed low IC50 values against both the KY-mutant HIV-1 RT and wildtype (WT) HIV-1 RT. The kinetic binding affinity forms surface plasmon resonance of both KY-mutant and WT HIV-1 RTs in the range of 0.06–2 μM and 0.15–2 μM, respectively. Among these aptamers, the KY44 aptamer was chosen to study the interaction of HIV-1 RTs-DNA aptamer complex by NMR experiments. The NMR results indicate that the aptamer could interact with both WT and KY-mutant HIV-1 RT at the NNRTI drug binding pocket by inducing a chemical shift at methionine residues. Furthermore, KY44 could inhibit pseudo-HIV particle infection in HEK293 cells with nearly 80% inhibition and showed low cytotoxicity on HEK293 cells. These together indicated that the KY44 aptamer could be a potential inhibitor of both WT and KY-mutant HIV-RT.

2018 ◽  
Vol 38 (2) ◽  
Author(s):  
Ron Zhi-Hui Chiang ◽  
Samuel Ken-En Gan ◽  
Chinh Tran-To Su

HIV drug resistant mutations that render the current Highly Active Anti-Retroviral Therapy (HAART) cocktail drugs ineffective are increasingly reported. To study the mechanisms of these mutations in conferring drug resistance, we computationally analyzed 14 reverse transcriptase (RT) structures of HIV-1 on the following parameters: drug-binding pocket volume, allosteric effects caused by the mutations, and structural thermal stability. We constructed structural correlation-based networks of the mutant RT–drug complexes and the analyses support the use of efavirenz (EFZ) as the first-line drug, given that cross-resistance is least likely to develop from EFZ-resistant mutations. On the other hand, rilpivirine (RPV)-resistant mutations showed the highest cross-resistance to the other non-nucleoside RT inhibitors. With significant drug cross-resistance associated with the known allosteric drug-binding site, there is a need to identify new allosteric druggable sites in the structure of RT. Through computational analyses, we found such a novel druggable pocket on the HIV-1 RT structure that is comparable with the original allosteric drug site, opening the possibility to the design of new inhibitors.


Author(s):  
Arash Soltani ◽  
Seyed Isaac Hashemy ◽  
Farnaz Zahedi Avval ◽  
Houshang Rafatpanah ◽  
Seyed Abdolrahim Rezaee ◽  
...  

Introoduction: Inhibition of the reverse transcriptase (RT) enzyme of human immunodeficiency virus (HIV) by low molecular weight inhibitors is still an active area of research. Here, protein-ligand interactions and possible binding modes of novel compounds with the HIV-1 RT binding pocket (the wild-type as well as Y181C and K103N mutants) were obtained and discussed. Methods: A molecular fragment-based approach using FDA-approved drugs were followed to design novel chemical derivatives using delavirdine, efavirenz, etravirine and rilpivirine as the scaffolds. The drug-likeliness of the derivatives was evaluated using Swiss-ADME. Then the parent molecule and derivatives were docked into the binding pocket of related crystal structures (PDB ID: 4G1Q, 1IKW, 1KLM and 3MEC). Genetic Optimization for Ligand Docking (GOLD) Suite 5.2.2 software was used for docking and the results analyzed in the Discovery Studio Visualizer 4. A derivative was chosen for further analysis, if it passed drug-likeliness and the docked energy was more favorable than that of its parent molecule. Out of the fifty-seven derivatives, forty-eight failed in druglikeness screening by Swiss-ADME or in docking stage. Results: The final results showed that the selected compounds had higher predicted binding affinities than their parent scaffolds in both wild-type and the mutants. Binding energy improvement was higher for the structures designed based on second-generation NNRTIs (etravirine and rilpivirine) than the first-generation NNRTIs (delavirdine and efavirenz). For example, while the docked energy for rilpivirine was -51 KJ/mol, it was improved for its derivatives RPV01 and RPV15 up to -58.3 and -54.5 KJ/mol, respectively. Conclusion: In this study, we have identified and proposed some novel molecules with improved binding capacity for HIV RT using fragment-based approach.


2015 ◽  
Vol 25 (1) ◽  
pp. 46-55 ◽  
Author(s):  
Matthew T. Miller ◽  
Steve Tuske ◽  
Kalyan Das ◽  
Jeffrey J. DeStefano ◽  
Eddy Arnold

2015 ◽  
Vol 396 (12) ◽  
pp. 1315-1323
Author(s):  
Bianca Heyn ◽  
Nicole Pogodalla ◽  
Susanne Brakmann

Abstract Changes of Leu109 and Arg448 of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) have as yet not been associated with altered fitness. However, in a recent study, we described that the simultaneous substitution of L109 and R448 by methionine leads to an error-producing polymerase phenotype that is not observed for the isolated substitutions. The double mutant increased the error rate of DNA-dependent DNA synthesis 3.1-fold as compared to the wildtype enzyme and showed a mutational spectrum with a fraction of 28% frameshift mutations and 48% transitions. We show here that weaker binding of DNA:DNA primer-templates as indicated by an increased dissociation rate constant (koff) could account for the higher frameshift error rate. Furthermore, we were able to explain the prevalence of transition mutations with the finding that HIV-1 RT variant L109M/R448M preferred misincorporation of C opposite A and elongation of C:A mismatches.


Author(s):  
Nguyen Truong Tien ◽  
Bui Tho Thanh

The HIV/AIDS epidemic has become one of the most dangerous causes leading to millions of deaths around the world a year. To date, there have not had effective anti-HIV drugs in the treatment of HIV/AIDS because of emerging drug-resistant HIV mutants. In this work, potential non-nucleoside reverse transcriptase inhibitors (NNRTIs) were studied by means of molecular docking. The Diversity “drug-like” database from the National Cancer Institute, is composed of 1.420 compounds, was performed docking into the NNRTI binding pocket of HIV-1 reverse transcriptase crystal structure (1fk9) by using Autodock version 4.2.6. Pharmacokinetic properties (absorption, distribution, metabolism and excretion (ADME)) and toxicity of potential inhibitors within the body were predicted by the PreADMET version 2.0. The obtained results point out that the compound, coded 2518, was discovered as a potential inhibitor that has good human intestinal absorption, weakly bound to plasma proteins as well as is negative to mutagenicity and carcinogenicity. This rational inhibitor would be further studied in order to contribute informations finding new anti-HIV drugs.


2020 ◽  
Vol 2 ◽  
pp. 116-129 ◽  
Author(s):  
Steve Tuske ◽  
Jie Zheng ◽  
Erik D. Olson ◽  
Francesc X. Ruiz ◽  
Bruce D. Pascal ◽  
...  

2007 ◽  
Vol 365 (1) ◽  
pp. 77-89 ◽  
Author(s):  
Kalyan Das ◽  
Stefan G. Sarafianos ◽  
Arthur D. Clark ◽  
Paul L. Boyer ◽  
Stephen H. Hughes ◽  
...  

2020 ◽  
Author(s):  
Tomas Bastys ◽  
Vytautas Gapsys ◽  
Hauke Walter ◽  
Eva Heger ◽  
Nadezhda T Doncheva ◽  
...  

Abstract Background HIV-1 can develop resistance to antiretroviral drugs, mainly through mutations within the target regions of the drugs. In HIV-1 protease, a majority of resistance-associated mutations that develop in response to therapy with protease inhibitors are found in the protease’s active site that serves also as a binding pocket for the protease inhibitors, thus directly impacting the protease-inhibitor interactions. Some resistance-associated mutations, however, are found in more distant regions, and the exact mechanisms how these mutations affect protease-inhibitor interactions are unclear. Furthermore, some of these mutations, e.g. N88S and L76V, do not only induce resistance to the currently administered drugs, but contrarily induce sensitivity towards other drugs. In this study, mutations N88S and L76V, along with three other resistance-associated mutations, M46I, I50L, and I84V, are analysed by means of molecular dynamics simulations to investigate their role in complexes of the protease with different inhibitors and in different background sequence contexts. Results Using these simulations for alchemical calculations to estimate the effects of mutations M46I, I50L, I84V, N88S, and L76V on binding free energies shows they are in general in line with the mutations’ effect on IC50 values. For the primary mutation L76V, however, the presence of a background mutation M46I in our analysis influences whether the unfavourable effect of L76V on inhibitor binding is sufficient to outweigh the accompanying reduction in catalytic activity of the protease. Finally, we show that L76V and N88S changes the hydrogen bond stability of these residues with residues D30/K45 and D30/T31/T74, respectively. Conclusions We demonstrate that estimating the effect of both binding pocket and distant mutations on inhibitor binding free energy using alchemical calculations can reproduce their effect on the experimentally measured IC50 values. We show that distant site mutations L76V and N88S affect the hydrogen bond network in the protease’s active site, which offers an explanation for the indirect effect of these mutations on inhibitor binding. This work thus provides valuable insights on interplay between primary and background mutations and mechanisms how they affect inhibitor binding.


Sign in / Sign up

Export Citation Format

Share Document