scholarly journals Optimized Nuclear Pellet Method for Extracting Next-Generation Sequencing Quality Genomic DNA from Fresh Leaf Tissue

2019 ◽  
Vol 2 (2) ◽  
pp. 54 ◽  
Author(s):  
Md Masud Rana ◽  
Murat Aycan ◽  
Takeshi Takamatsu ◽  
Kentaro Kaneko ◽  
Toshiaki Mitsui ◽  
...  

Next-generation sequencing (NGS) is a revolutionary advancement allowing large-scale discovery of functional molecular markers that has many applications, including plant breeding. High-quality genomic DNA (gDNA) is a prerequisite for successful NGS library preparation and sequencing; however, few reliable protocols to obtain such plant gDNA exist. A previously reported nuclear pellet (NP) method enables extraction of high-yielding gDNA from fresh leaf tissue of maize (Zea mays L.), but the quality does not meet the stringent requirements of NGS. In this study, we optimized the NP method for whole-genome sequencing of rice (Oryza sativa L.) through the integration of simple purification steps. The optimized NP method relied on initial nucleus enrichment, cell lysis, extraction, and subsequent gDNA purification buffers. The purification steps used proteinase K, RNase A, phenol/chloroform/isoamyl alcohol (25:24:1), and chloroform/isoamyl alcohol (24:1) treatments for protein digestion and RNA, protein, and phenol removal, respectively. Our data suggest that this optimized NP method allowed extraction of consistently high-yielding and high-quality undegraded gDNA without contamination by protein and RNA. Moreover, the extracted gDNA fulfilled the quality metrics of NGS library preparation for the Illumina HiSeq X Ten platform by the TruSeq DNA PCR-Free Library Prep Kit (Illumina). We provide a reliable step-by-step guide to the extraction of high-quality gDNA from fresh leaf tissues of rice for molecular biologists with limited resources.

Cancers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1691
Author(s):  
Muscarella ◽  
Fabrizio ◽  
De Bonis ◽  
Mancini ◽  
Balsamo ◽  
...  

Thanks to personalized medicine trends and collaborations between industry, clinical research groups and regulatory agencies, next generation sequencing (NGS) is turning into a common practice faster than one could have originally expected. When considering clinical applications of NGS in oncology, a rapid workflow for DNA extraction from formalin-fixed paraffin-embedded (FFPE) tissue samples, as well as producing high quality library preparation, can be real challenges. Here we consider these targets and how applying effective automation technology to NGS workflows may help improve yield, timing and quality-control. We firstly evaluated DNA recovery from archived FFPE blocks from three different manual extraction methods and two automated extraction workstations. The workflow was then implemented to somatic (lung/colon panel) and germline (BRCA1/2) library preparation for NGS analysis exploiting two automated workstations. All commercial kits gave good results in terms of DNA yield and quality. On the other hand, the automated workstation workflow has been proven to be a valid automatic extraction system to obtain high quality DNA suitable for NGS analysis (lung/colon Ampli-seq panel). Moreover, it can be efficiently integrated with an open liquid handling platform to provide high-quality libraries from germline DNA with more reproducibility and high coverage for targeted sequences in less time (BRCA1/2). The introduction of automation in routine workflow leads to an improvement of NGS standardization and increased scale up of sample preparations, reducing labor and timing, with optimization of reagents and management.


2011 ◽  
Vol 10 (6) ◽  
pp. 374-386 ◽  
Author(s):  
F. Mertes ◽  
A. ElSharawy ◽  
S. Sauer ◽  
J. M. L. M. van Helvoort ◽  
P. J. van der Zaag ◽  
...  

BMC Genomics ◽  
2018 ◽  
Vol 19 (1) ◽  
Author(s):  
Wells W. Wu ◽  
Je-Nie Phue ◽  
Chun-Ting Lee ◽  
Changyi Lin ◽  
Lai Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document