scholarly journals Assessment of the Theranostic Potential of Gold Nanostars—A Multimodal Imaging and Photothermal Treatment Study

Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2112 ◽  
Author(s):  
Antoine D’Hollander ◽  
Greetje Vande Velde ◽  
Hilde Jans ◽  
Bram Vanspauwen ◽  
Elien Vermeersch ◽  
...  

Gold nanoparticles offer the possibility to combine both imaging and therapy of otherwise difficult to treat tumors. To validate and further improve their potential, we describe the use of gold nanostars that were functionalized with a polyethyleneglycol-maleimide coating for in vitro and in vivo photoacoustic imaging (PAI), computed tomography (CT), as well as photothermal therapy (PTT) of cancer cells and tumor masses, respectively. Nanostar shaped particles show a high absorption coefficient in the near infrared region and have a hydrodynamic size in biological medium around 100 nm, which allows optimal intra-tumoral retention. Using these nanostars for in vitro labeling of tumor cells, high intracellular nanostar concentrations could be achieved, resulting in high PAI and CT contrast and effective PTT. By injecting the nanostars intratumorally, high contrast could be generated in vivo using PAI and CT, which allowed successful multi-modal tumor imaging. PTT was successfully induced, resulting in tumor cell death and subsequent inhibition of tumor growth. Therefore, gold nanostars are versatile theranostic agents for tumor therapy.

Author(s):  
Chuangjia Huang ◽  
Xiaoling Guan ◽  
Hui Lin ◽  
Lu Liang ◽  
Yingling Miao ◽  
...  

Indocyanine green (ICG), a near-infrared (NIR) fluorescent dye approved by the Food and Drug Administration (FDA), has been extensively used as a photoacoustic (PA) probe for PA imaging. However, its practical application is limited by poor photostability in water, rapid body clearance, and non-specificity. Herein, we fabricated a novel biomimetic nanoprobe by coating ICG-loaded mesoporous silica nanoparticles with the cancer cell membrane (namely, CMI) for PA imaging. This probe exhibited good dispersion, large loading efficiency, good biocompatibility, and homologous targeting ability to Hela cells in vitro. Furthermore, the in vivo and ex vivo PA imaging on Hela tumor-bearing nude mice demonstrated that CMI could accumulate in tumor tissue and display a superior PA imaging efficacy compared with free ICG. All these results demonstrated that CMI might be a promising contrast agent for PA imaging of cervical carcinoma.


2021 ◽  
Vol 11 ◽  
Author(s):  
Wen Zeng ◽  
Dazhen Jiang ◽  
Zeming Liu ◽  
Weilong Suo ◽  
Ziqi Wang ◽  
...  

Hydroxyl radical (•OH)-mediated chemodynamic therapy (CDT) is an emerging antitumor strategy, however, acid deficiency in the tumor microenvironment (TME) hampers its efficacy. In this study, a new injectable hydrogel was developed as an acid-enhanced CDT system (AES) for improving tumor therapy. The AES contains iron–gallic acid nanoparticles (FeGA) and α-cyano-4-hydroxycinnamic acid (α-CHCA). FeGA converts near-infrared laser into heat, which results in agarose degradation and consequent α-CHCA release. Then, as a monocarboxylic acid transporter inhibitor, α-CHCA can raise the acidity in TME, thus contributing to an increase in ·OH-production in FeGA-based CDT. This approach was found effective for killing tumor cells both in vitro and in vivo, demonstrating good therapeutic efficacy. In vivo investigations also revealed that AES had outstanding biocompatibility and stability. This is the first study to improve FeGA-based CDT by increasing intracellular acidity. The AES system developed here opens new opportunities for effective tumor treatment.


2020 ◽  
Author(s):  
Fangpeng Shu ◽  
Taowei Yang ◽  
Xuefeng Zhang ◽  
Wenbin Chen ◽  
Kaihui Wu ◽  
...  

Abstract The integration of multiple functions with organic polymers-based nanoagent holds great potential to potentiate its therapeutic efficacy, but still remains challenges. In the present study, we design and prepare an organic nanoagent with oxygen-evolved and targeted ability for improved phototherapeutic efficacy. The iron ions doped poly diaminopyridine (FeD) is prepared by oxidize polymerization and modified with hyaluronic acid (HA). The obtained FeDH appears uniform morphology and size. Its excellent colloidal stability and biocompatibility are demonstrated. Specifically, the FeDH exhibits catalase-like activity in the presence of hydrogen peroxide. After loading of photosensitizer indocyanine green (ICG), the ICG@FeDH not only demonstrates favorable photothermal effect, but also shows improved generation ability of reactive oxygen species (ROS) under near-infrared laser irradiation. Moreover, the targeted uptake of ICG@FeDH in tumor cells is directly observed. As consequence, the superior phototherapeutic efficacy of the targeted ICG@FeDH over non-targeted counterparts is also confirmed in vitro and in vivo. Hence, the results demonstrate that the developed nanoagent rationally integrates the targeted ability, oxygen-evolved capacity and combined therapy in one system, offering a new paradigm of polymer-based nanomedicine for tumor therapy.


2020 ◽  
Author(s):  
Nan Song ◽  
Zhijun Zhang ◽  
Peiying Liu ◽  
Dihua Dai ◽  
Chao Chen ◽  
...  

Supramolecular approaches have opened up vast possibilities in the construction of versatile functional materials, especially those with stimuli-responsiveness and integrated functionalities of multi-modal diagnosis and synergistic therapeutics. In this study, a hybrid theranostic nanosystem named TTPY-PyÌCP5@AuNR is constructed via facile host-guest interactions, where TTPY-Py is a photosensitizer with aggregation-induced emission and CP5@AuNR represents the carboxylatopillar[5]arene (CP5)-modified Au nanorods. TTPY-PyÌCP5@AuNR integrates the respective advantages of TTPY-Py and CP5@AuNR such as the high performance of reactive oxygen species (ROS) generation and photothermal conversion, and meanwhile shows fluorescence responses to both temperature and pH stimuli due to the non-covalent interactions. The successful modification of CP5 macrocycles on AuNRs surfaces can eliminate the cytotoxicity of AuNRs and enable them to serve as the nanocarrier of TTPY-Py for further theranostic application. Significantly, both in vitro and in vivo evaluations demonstrate that this supramolecular nanotheranostic system possesses multiple phototheranostic modalities including intensive fluorescence imaging (FLI), photoacoustic imaging (PAI), efficient photodynamic therapy (PDT), and photothermal therapy (PTT), indicating its great potentials for FLI-PAI imaging-guided synergistic PDT-PTT therapy. Besides, TTPY-Py can be released from the nanocarriers upon activating by the acidic environment of lysosomes and then specifically light up mitochondria. This study brings up a new strategy into the design of versatile nanotheranostics for accurate tumor imaging and cancer therapies.


2019 ◽  
Author(s):  
Piyush Kumar ◽  
Timothy Van Treuren ◽  
Amalendu Ranjan ◽  
Jamboor K Vishwanatha

<p>In this work, we studied the effect of chitosan conjugated N-acetyl cysteine (CHT-NAC) coating on liposomal (DMPC:14 lysoPG: DSPE-2000-NH2) nanoparticles as a vehicle to cross the blood-brain barrier. The size of lipo-NP and Lipo-CHT-NAC NP were sub 50 nm with negative surface charge consistent with its use in an intravenous application. In vitro near infrared (NIR) imaging showed good cellular uptake in two triple-negative breast cancer cell lines (MDA-MB-231 and brain metastatic MDA-MB-831). Live (4-120 h) and ex-vivo near-infrared imaging at 24 h in nude mice showed the extended circulation of CHT-NAC Lipo-NP. These results demonstrated that Lipo-CHT-NAC NP could be used for metastatic brain tumor imaging.</p>


2019 ◽  
Author(s):  
Piyush Kumar ◽  
Timothy Van Treuren ◽  
Amalendu Ranjan ◽  
Jamboor K Vishwanatha

<p>In this work, we studied the effect of chitosan conjugated N-acetyl cysteine (CHT-NAC) coating on liposomal (DMPC:14 lysoPG: DSPE-2000-NH2) nanoparticles as a vehicle to cross the blood-brain barrier. The size of lipo-NP and Lipo-CHT-NAC NP were sub 50 nm with negative surface charge consistent with its use in an intravenous application. In vitro near infrared (NIR) imaging showed good cellular uptake in two triple-negative breast cancer cell lines (MDA-MB-231 and brain metastatic MDA-MB-831). Live (4-120 h) and ex-vivo near-infrared imaging at 24 h in nude mice showed the extended circulation of CHT-NAC Lipo-NP. These results demonstrated that Lipo-CHT-NAC NP could be used for metastatic brain tumor imaging.</p>


Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 71
Author(s):  
Tânia Ferreira-Gonçalves ◽  
Maria Manuela Gaspar ◽  
João M. P. Coelho ◽  
Vanda Marques ◽  
Ana S. Viana ◽  
...  

Breast cancer is a high-burden malignancy for society, whose impact boosts a continuous search for novel diagnostic and therapeutic tools. Among the recent therapeutic approaches, photothermal therapy (PTT), which causes tumor cell death by hyperthermia after being irradiated with a light source, represents a high-potential strategy. Furthermore, the effectiveness of PTT can be improved by combining near infrared (NIR) irradiation with gold nanoparticles (AuNPs) as photothermal enhancers. Herein, an alternative synthetic method using rosmarinic acid (RA) for synthesizing AuNPs is reported. The RA concentration was varied and its impact on the AuNPs physicochemical and optical features was assessed. Results showed that RA concentration plays an active role on AuNPs features, allowing the optimization of mean size and maximum absorbance peak. Moreover, the synthetic method explored here allowed us to obtain negatively charged AuNPs with sizes favoring the local particle accumulation at tumor site and maximum absorbance peaks within the NIR region. In addition, AuNPs were safe both in vitro and in vivo. In conclusion, the synthesized AuNPs present favorable properties to be applied as part of a PTT system combining AuNPs with a NIR laser for the treatment of breast cancer.


2021 ◽  
Author(s):  
Yuanyuan Zhong ◽  
Li Zhang ◽  
Shian Sun ◽  
Zhenghao Zhou ◽  
Yunsu Ma ◽  
...  

Abstract With hollow mesoporous silica (hMSN) and injectable macroporous hydrogel (Gel) used as the internal and external drug-loading material respectively, a sequential drug delivery system DOX-CA4P@Gel was constructed, in which combretastatin A4 phosphate (CA4P) and doxorubicin (DOX) were both loaded. The anti-angiogenic drug, CA4P was initially released due to the degradation of Gel, followed by the anti-cell proliferative drug, DOX, released from hMSN in tumor microenvironment. Results showed that CA4P was mainly released at the early stage. At 48 h, CA4P release reached 71.08%, while DOX was only 14.39%. At 144 h, CA4P was 78.20%, while DOX release significantly increased to 61.60%, showing an obvious sequential release behavior. Photodynamic properties of porphyrin endow hydrogel (φΔ(Gel)=0.91) with enhanced tumor therapy effect. In vitro and in vivo experiments showed that dual drugs treated groups have better tumor inhibition than solo drug under near infrared laser irradiation, indicating the effectivity of combined photodynamic-chemotherapy.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Fangpeng Shu ◽  
Taowei Yang ◽  
Xuefeng Zhang ◽  
Wenbin Chen ◽  
Kaihui Wu ◽  
...  

AbstractThe integration of multiple functions with organic polymers-based nanoagent holds great potential to potentiate its therapeutic efficacy, but still remains challenges. In the present study, we design and prepare an organic nanoagent with oxygen-evolved and targeted ability for improved phototherapeutic efficacy. The iron ions doped poly diaminopyridine (FeD) is prepared by oxidize polymerization and modified with hyaluronic acid (HA). The obtained FeDH appears uniform morphology and size. Its excellent colloidal stability and biocompatibility are demonstrated. Specifically, the FeDH exhibits catalase-like activity in the presence of hydrogen peroxide. After loading of photosensitizer indocyanine green (ICG), the ICG@FeDH not only demonstrates favorable photothermal effect, but also shows improved generation ability of reactive oxygen species (ROS) under near-infrared laser irradiation. Moreover, the targeted uptake of ICG@FeDH in tumor cells is directly observed. As consequence, the superior phototherapeutic efficacy of the targeted ICG@FeDH over non-targeted counterparts is also confirmed in vitro and in vivo. Hence, the results demonstrate that the developed nanoagent rationally integrates the targeted ability, oxygen-evolved capacity and combined therapy in one system, offering a new paradigm of polymer-based nanomedicine for tumor therapy.


Sign in / Sign up

Export Citation Format

Share Document