scholarly journals Fabrication of Silver-Decorated Graphene Oxide Nanohybrids via Pulsed Laser Ablation with Excellent Antimicrobial and Optical Limiting Performance

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 880
Author(s):  
Parvathy Nancy ◽  
Jiya Jose ◽  
Nithin Joy ◽  
Sivakumaran Valluvadasan ◽  
Reji Philip ◽  
...  

The demand for metallic nanoparticle ornamented nanohybrid materials of graphene oxide (GO) finds copious recognition by virtue of its advanced high-tech applications. Far apart from the long-established synthesis protocols, a novel laser-induced generation of silver nanoparticles (Ag NPs) that are anchored onto the GO layers by a single-step green method named pulsed laser ablation has been exemplified in this work. The second and third harmonic wavelengths (532 nm and 355 nm) of an Nd:YAG pulsed laser is used for the production of Ag NPs from a bulk solid silver target ablated in an aqueous solution of GO to fabricate colloidal Ag-GO nanohybrid materials. UV-Vis absorption spectroscopy, Raman spectroscopy, and TEM validate the optical, structural, and morphological features of the hybrid nanomaterials. The results revealed that the laser-assisted in-situ deposition of Ag NPs on the few-layered GO surface improved its antibacterial properties, in which the hybrid nanostructure synthesized at a longer wavelength exhibited higher antibacterial action resistance to Escherichia coli (E. coli) than Staphylococcus aureus (S. aureus) bacteria. Moreover, nonlinear optical absorption (NLA) of Ag-GO nanohybrid was measured using the open aperture Z-scan technique. The Z-scan results signify the NLA properties of the Ag-GO hybrid material and have a large decline in transmittance of more than 60%, which can be employed as a promising optical limiting (OL) material.

2021 ◽  
pp. 103317
Author(s):  
Muidh Alheshibri ◽  
Sultan Akhtar ◽  
Abbad Al Baroot ◽  
Khaled Elsayed ◽  
Hassan S Al Qahtani ◽  
...  

2018 ◽  
Vol 243 ◽  
pp. 00017 ◽  
Author(s):  
Daria Goncharova ◽  
Ekaterina Gavrilenko ◽  
Anna Nemoykina ◽  
Valery Svetlichnyi

The paper studies physicochemical and antibacterial properties of ZnO nanoparticles obtained by pulsed laser ablation in water and air. Their composition and structure were studied by X-ray diffraction, transmission and scanning electron microscopy. Antibacterial activity of the nanoparticles was examined by its affection on Gram-positive Staphylococcus aureus (S.aureus). The dependence of nanoparticles’ physical and chemical antibacterial properties on the conditions of the ablation was shown. The model materials for the antibacterial bandage were made of cotton, filter paper and biodegradable polymer scaffolds (poly-l-lactide acid), and then they were coated with the obtained ZnO nanoparticles. The model bandage materials were examined by the scanning electron microscopy method and their antibacterial activity (ISO 20743:2013) was determined. High activity of all the samples against S.aureus was proved.


2013 ◽  
Vol 114 (24) ◽  
pp. 243101 ◽  
Author(s):  
Rajamudili Kuladeep ◽  
L. Jyothi ◽  
P. Prakash ◽  
S. Mayank Shekhar ◽  
M. Durga Prasad ◽  
...  

2020 ◽  
Vol 58 (11) ◽  
pp. 808-814
Author(s):  
Jung-Il Lee ◽  
Jeong Ho Ryu

Graphene oxide quantum dots (GOQDs) are nanometer-sized graphene oxide fragments that exhibit unique properties, making them interesting candidates for a range of new applications. Carbon black, one of the commercially available carbon precursors, is produced by the thermal decomposition or incomplete combustion of organic compounds. It is commonly used as a supporting material for catalysts because of its excellent electrical conductivity, high surface area, and stability. In this paper, we report the transformation of carbon black into GOQDs in 10 min using a one-step facile approach. This transformation was achieved by pulsed laser ablation (PLA) in ethanol using the earth-abundant and low-cost carbon black as precursor. Only ethanol and carbon black were used for the transformation. The carbon clusters ablated from the carbon black were completely transformed into GOQDs with a homogeneous size distribution and heights in the range of 0.3-1.7 nm. This confirmed that the transformed GOQDs consisted of only single- or few-layered graphene quantum dots. The UV-vis spectra showed absorption bands at 215, 260, and 320 nm, which were attributed to the π→π* transition of the C=C of the sp<sup>2</sup> C bond in the sp<sup>3</sup> C matrix. A distinct blue emission peak at 450 nm was evident at an excitation wavelength of 360 nm. The broader PL emission spectra are due to the oxygen-related functional groups emitting PL between 300 and 440 nm.


2012 ◽  
Vol 2 (6) ◽  
pp. 799 ◽  
Author(s):  
Turkka Salminen ◽  
Johnny Dahl ◽  
Marjukka Tuominen ◽  
Pekka Laukkanen ◽  
Eero Arola ◽  
...  

2011 ◽  
Vol 40 (7) ◽  
pp. 768-769 ◽  
Author(s):  
Moon-Youl Choi ◽  
Dae-Suk Kim ◽  
Dae Seung Hong ◽  
Jung Ho Kim ◽  
Yong-Tae Kim

Sign in / Sign up

Export Citation Format

Share Document