scholarly journals Using Dissipative Particle Dynamics to Model Effects of Chemical Reactions Occurring within Hydrogels

Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2764
Author(s):  
Ya Liu ◽  
Joanna Aizenberg ◽  
Anna C. Balazs

Computational models that reveal the structural response of polymer gels to changing, dissolved reactive chemical species would provide useful information about dynamically evolving environments. However, it remains challenging to devise one computational approach that can capture all the interconnected chemical events and responsive structural changes involved in this multi-stage, multi-component process. Here, we augment the dissipative particle dynamics (DPD) method to simulate the reaction of a gel with diffusing, dissolved chemicals to form kinetically stable complexes, which in turn cause concentration-dependent deformation of the gel. Using this model, we also examine how the addition of new chemical stimuli and subsequent reactions cause the gel to exhibit additional concentration-dependent structural changes. Through these DPD simulations, we show that the gel forms multiple latent states (not just the “on/off”) that indicate changes in the chemical composition of the fluidic environment. Hence, the gel can actuate a range of motion within the system, not just movements corresponding to the equilibrated swollen or collapsed states. Moreover, the system can be used as a sensor, since the structure of the layer effectively indicates the presence of chemical stimuli.

2017 ◽  
Author(s):  
Alireza Yazdani ◽  
Zhen Li ◽  
Jay D. Humphrey ◽  
George Em Karniadakis

AbstractWe propose a new multiscale framework that seamlessly integrates four key components of blood clotting namely, blood rheology, cell mechanics, coagulation kinetics and transport of species and platelet adhesive dynamics. We use transport dissipative particle dynamics (tDPD), which is the extended form of original DPD, as the base solver, while a coarse-grained representation of blood cell’s membrane accounts for its mechanics. Our results show the dominant effect of blood flow and high Peclet numbers on the reactive transport of the chemical species signifying the importance of membrane bound reactions on the surface of adhered platelets. This new multiscale particle-based methodology helps us probe synergistic mechanisms of thrombus formation, and can open new directions in addressing other biological processes from sub-cellular to macroscopic scales.


2019 ◽  
Author(s):  
Ting Liu ◽  
Anupam Mishra ◽  
Mohsen Torabi ◽  
Ahmed A. Hemeda ◽  
James Palko ◽  
...  

2005 ◽  
Vol 42 (3) ◽  
pp. 180-183 ◽  
Author(s):  
S. G. Schulz ◽  
U. Frieske ◽  
H. Kuhn ◽  
G. Schmid ◽  
F. Müller ◽  
...  

2021 ◽  
Vol 33 (7) ◽  
pp. 072001
Author(s):  
Liuzhen Ren ◽  
Haibao Hu ◽  
Luyao Bao ◽  
Mengzhuo Zhang ◽  
Jun Wen ◽  
...  

2012 ◽  
Vol 45 (19) ◽  
pp. 8109-8116 ◽  
Author(s):  
Brandon L. Peters ◽  
Abelardo Ramírez-Hernández ◽  
Darin Q. Pike ◽  
Marcus Müller ◽  
Juan J. de Pablo

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ramin Zakeri

AbstractOne of the unresolved issues in physiology is how exactly myosin moves in a filament as the smallest responsible organ for contracting of a natural muscle. In this research, inspired by nature, a model is presented consisting of DPD (dissipative particle dynamics) particles driven by electro-osmotic flow (EOF) in micro channel that a thin movable impermeable polymer membrane has been attached across channel width, thus momentum of fluid can directly transfer to myosin stem. At the first, by validation of electro-osmotic flow in micro channel in different conditions with accuracy of less than 10 percentage error compared to analytical results, the DPD results have been developed to displacement of an impermeable polymer membrane in EOF. It has been shown that by the presence of electric field of 250 V/m and Zeta potential − 25 mV and the dimensionless ratio of the channel width to the thickness of the electric double layer or kH = 8, about 15% displacement in 8 s time will be obtained compared to channel width. The influential parameters on the displacement of the polymer membrane from DPD particles in EOF such as changes in electric field, ion concentration, zeta potential effect, polymer material and the amount of membrane elasticity have been investigated which in each cases, the radius of gyration and auto correlation velocity of different polymer membrane cases have been compared together. This simulation method in addition of probably helping understand natural myosin displacement mechanism, can be extended to design the contraction of an artificial muscle tissue close to nature.


Sign in / Sign up

Export Citation Format

Share Document