scholarly journals Facile Electrochemical Sensor for Nanomolar Rutin Detection Based on Magnetite Nanoparticles and Reduced Graphene Oxide Decorated Electrode

Nanomaterials ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 115 ◽  
Author(s):  
Quanguo He ◽  
Yiyong Wu ◽  
Yaling Tian ◽  
Guangli Li ◽  
Jun Liu ◽  
...  

A new electrochemical sensor for nanomolar rutin detection based on amine-functionalized Fe3O4 nanoparticles and electrochemically reduced graphene oxide nanocomposite modified glassy carbon electrode (NH2-Fe3O4 NPs-ErGO/GCE) was fabricated through a simple method, and the X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), transmission electron microscope (TEM), vibrating sample magnetometer (VSM) and electrochemical technique were used to characterize the modified electrode. The electrochemical behavior of rutin on the Fe3O4 NPs-ErGO/GCE was studied in detail. The electrochemical response of rutin at this modified electrode was remarkably higher than that of the bare GCE or other modified GCE (GO/GCE, Fe3O4 NPs-GO/GCE, and ErGO/GCE). Under the optimum determination conditions, Fe3O4 NPs-ErGO/GCE provided rutin with a broader detection range of 6.0 nM–0.1 µM; 0.1–8.0 µM and 8.0–80 µM, a minimum detectable concentration of 4.0 nM was obtained after 210 s accumulation. This novel method was applied in determination of rutin in pharmaceutical tablets and urine samples with satisfactory results.

2019 ◽  
Vol 9 (3) ◽  
pp. 143-152 ◽  
Author(s):  
Chenglong Chen ◽  
Zhen Han ◽  
Wu Lei ◽  
Yong Ding ◽  
Jingjing Lv ◽  
...  

The glassy carbon electrode (GCE) was modified by electrochemically reduced graphene oxide (ERGO) and polypyrrole (PPy) prepared by simple cyclic voltammetry (CV) electropoly­merization. The PPy/ERGO modified electrode (PPy/ERGO/GCE) was used as a platform of electrochemical sensor to detect imidacloprid (IMI) insecticide. CV and differential pulse voltammetry (DPV) were chosen as the methods to investigate of the electrochemical behavior of IMI on PPy/ERGO/GCE surface. Scanning electron microscopy (SEM) and Raman spectra were utilized to describe the morphology and structure of the modified electrode. Experimental parameters were optimized, such as the number of polymerization cycles, scan rate and the pH value of electrolyte. Under the optimized conditions, when the concentration of IMI was in the range of 1-10 μM and 10-60 μM, the increase of reduction peak current was linear with the concentration of IMI, and the low detection limit was found to be 0.18 μM (S/N = 3). Results showed that PPy/ERGO/GCE demonstrated satisfactory reproducibility and stability, and has great potential in actual sample testing.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Gen Liu ◽  
Wei Ma ◽  
Yan Luo ◽  
Deng-ming Sun ◽  
Shuang Shao

Poly(methylene blue) and electrochemically reduced graphene oxide composite film modified electrode (PMB-ERGO/GCE) was successfully fabricated by electropolymerization and was used for simultaneous determination of uric acid (UA) and xanthine (Xa). Based on the excellent electrocatalytic activity of PMB-ERGO/GCE, the electrochemical behaviors of UA and Xa were studied by cyclic voltammetry (CV) and square wave voltammetry (SWV). Two anodic sensitive peaks at 0.630 V (versus Ag/AgCl) for UA and 1.006 V (versus Ag/AgCl) for Xa were given by CV in pH 3.0 phosphate buffer. The calibration curves for UA and Xa were obtained in the range of 8.00 × 10−8~4.00 × 10−4 M and 1.00 × 10−7~4.00 × 10−4 M, respectively, by SWV. The detection limits for UA and Xa were3.00×10-8 M and5.00×10-8 M, respectively. Finally, the proposed method was applied to simultaneously determine UA and Xa in human urine with good selectivity and high sensitivity.


2021 ◽  
Author(s):  
Sopit Phetsang ◽  
Pinit Kidkhunthod ◽  
Narong Chanlek ◽  
Jaroon Jakmunee ◽  
Pitchaya Mungkornasawakul ◽  
...  

Abstract Numerous studies suggest that modification with functional nanomaterials can enhance the electrode electrocatalytic activity, sensitivity, and selectivity of the electrochemical sensors. Here, a highly sensitive and cost-effective disposable non-enzymatic glucose sensor based on copper(II)/reduced graphene oxide modified screen-printed carbon electrode is demonstrated. Facile fabrication of the developed sensing electrodes is carried out by the adsorption of copper(II) onto graphene oxide modified electrode, then following the electrochemical reduction. The proposed sensor illustrates good electrocatalytic activity toward glucose oxidation with a wide linear detection range from 0.10 mM to 12.5 mM, low detection limit of 65 µM, and high sensitivity of 172 µA mM− 1 cm− 2 along with satisfactory anti-interference ability, reproducibility, stability, and the acceptable recoveries for the detection of glucose in a human serum sample (95.6–106.4%). The copper(II)/reduced graphene oxide based sensor with the superior performances is a great potential for the quantitation of glucose in real samples.


2018 ◽  
Vol 10 (23) ◽  
pp. 2731-2739 ◽  
Author(s):  
Amir Kaffash ◽  
Hamid R. Zare ◽  
Khosrow Rostami

An electrochemically reduced graphene oxide and horseradish peroxidase enzyme modified electrode has been used for phenol determination.


Sign in / Sign up

Export Citation Format

Share Document