scholarly journals The Molecular and Physiological Effects of Protein-Derived Polyamines in the Intestine

Nutrients ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 197 ◽  
Author(s):  
Anna F. Bekebrede ◽  
Jaap Keijer ◽  
Walter J. J. Gerrits ◽  
Vincent C. J. de Boer

Consumption of a high-protein diet increases protein entry into the colon. Colonic microbiota can ferment proteins, which results in the production of protein fermentation end-products, like polyamines. This review describes the effects of polyamines on biochemical, cellular and physiological processes, with a focus on the colon. Polyamines (mainly spermine, spermidine, putrescine and cadaverine) are involved in the regulation of protein translation and gene transcription. In this, the spermidine-derived hypusination modification of EIF5A plays an important role. In addition, polyamines regulate metabolic functions. Through hypusination of EIF5A, polyamines also regulate translation of mitochondrial proteins, thereby increasing their expression. They can also induce mitophagy through various pathways, which helps to remove damaged organelles and improves cell survival. In addition, polyamines increase mitochondrial substrate oxidation by increasing mitochondrial Ca2+-levels. Putrescine can even serve as an energy source for enterocytes in the small intestine. By regulating the formation of the mitochondrial permeability transition pore, polyamines help maintain mitochondrial membrane integrity. However, their catabolism may also reduce metabolic functions by depleting intracellular acetyl-CoA levels, or through production of toxic by-products. Lastly, polyamines support gut physiology, by supporting barrier function, inducing gut maturation and increasing longevity. Polyamines thus play many roles, and their impact is strongly tissue- and dose-dependent. However, whether diet-derived increases in colonic luminal polyamine levels also impact intestinal physiology has not been resolved yet.

Author(s):  
Sergey V. Popov ◽  
Ekaterina S. Prokudina ◽  
Alexander V. Mukhomedzyanov ◽  
Natalia V. Naryzhnaya ◽  
Huijie Ma ◽  
...  

Despite the recent progress in research and therapy, cardiovascular diseases are still the most common cause of death worldwide, thus new approaches are still needed. The aim of this review is to highlight the cardioprotective potential of urocortins and corticotropin-releasing hormone (CRH) and their signaling. It has been documented that urocortins and CRH reduce ischemic and reperfusion (I/R) injury, prevent reperfusion ventricular tachycardia and fibrillation, and improve cardiac contractility during reperfusion. Urocortin-induced increase in cardiac tolerance to I/R depends mainly on the activation of corticotropin-releasing hormone receptor-2 (CRHR2) and its downstream pathways including tyrosine kinase Src, protein kinase A and C (PKA, PKCε) and extracellular signal-regulated kinase (ERK1/2). It was discussed the possibility of the involvement of interleukin-6, Janus kinase-2 and signal transducer and activator of transcription 3 (STAT3) and microRNAs in the cardioprotective effect of urocortins. Additionally, phospholipase-A2 inhibition, mitochondrial permeability transition pore (MPT-pore) blockade and suppression of apoptosis are involved in urocortin-elicited cardioprotection. Chronic administration of urocortin-2 prevents the development of postinfarction cardiac remodeling. Urocortin possesses vasoprotective and vasodilator effect; the former is mediated by PKC activation and prevents an impairment of endothelium-dependent coronary vasodilation after I/R in the isolated heart, while the latter includes both cAMP and cGMP signaling and its downstream targets. As CRHR2 is expressed by both cardiomyocytes and vascular endothelial cells. Urocortins mediate both endothelium-dependent and -independent relaxation of coronary arteries.


Sign in / Sign up

Export Citation Format

Share Document