protein entry
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 11)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Thao Nguyen ◽  
Eli Costa ◽  
Tim Deibert ◽  
Jose Reyes ◽  
Felix Keber ◽  
...  

The development of a fertilized egg to an embryo requires the proper temporal control of gene expression. During cell differentiation, timing is often controlled via cascades of transcription factors (TFs). However, in early development, transcription is often inactive, and many TF levels are constant, suggesting that unknown mechanisms govern the observed rapid and ordered onset of gene expression. Here, we find that in early embryonic development, access of maternally deposited nuclear proteins to the genome is temporally ordered via importin affinities, thereby timing the expression of downstream targets. We quantify changes in the nuclear proteome during early development and find that nuclear proteins, such as TFs and RNA polymerases, enter nuclei sequentially. Moreover, we find that the timing of the access of nuclear proteins to the genome corresponds to the timing of downstream gene activation. We show that the affinity of proteins to importin is a major determinant in the timing of protein entry into embryonic nuclei. Thus, we propose a mechanism by which embryos encode the timing of gene expression in early development via biochemical affinities. This process could be critical for embryos to organize themselves before deploying the regulatory cascades that control cell identities.


2021 ◽  
Author(s):  
Jenna L. Wingfield ◽  
Betlehem Mekonnen ◽  
Ilaria Mengoni ◽  
Peiwei Liu ◽  
Mareike Jordan ◽  
...  

Flagellar assembly depends on intraflagellar transport (IFT), a bidirectional motility of protein carriers, the IFT trains. The trains are periodic assemblies of IFT-A and IFT-B subcomplexes and the motors kinesin-2 and IFT dynein. At the tip, anterograde trains are remodeled for retrograde IFT, a process that in Chlamydomonas involves kinesin-2 release and train fragmentation. However, the degree of train disassembly at the tip remains unknown. Two-color imaging of fluorescent protein-tagged IFT components indicates that IFT-A and IFT-B proteins from a given anterograde train usually return in the same set of retrograde trains. Similarly, concurrent turnaround was typical for IFT-B proteins and the IFT dynein subunit D1bLIC-GFP but severance was observed as well. Our data support a simple model of IFT turnaround, in which IFT-A, IFT-B, and IFT dynein typically remain associated at the tip and anterograde trains convert directly into retrograde trains without disassembly but for possible splitting into strings of IFT complexes. Continuous association of IFT-A, IFT-B and IFT dynein during tip remodeling could balance protein entry and exit preventing the build-up of IFT material in flagella.


Author(s):  
Mazhar MW ◽  
◽  
Raza A ◽  
Sikandar M ◽  
Mahmood J ◽  
...  

The COI sequence of O.laetus was submitted to the Genbank database holding an accession number HQ908084 (Figure1). The amino acid sequence of the corresponding COI gene was also updated under the accession number ADZ05746, which turned out to contain 222 amino acids. Base statistics of the O.laetus COI are presented in Figure 2. It can be seen from the table that the fragment is rich in AT content as expected with thymine occurring most frequently followed by the others in the order A, C & G. The AT% stood at 67.2 in comparison to GC% at 32.8. The protein entry was subjected to family confirmation by searching the InterProScan database and the results indicate a very high and significant match confirming our sequence to be a part of Cytochrome C.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Peristera Roboti ◽  
Sarah O’Keefe ◽  
Kwabena B. Duah ◽  
Wei Q. Shi ◽  
Stephen High

AbstractThe Sec61 complex translocates nascent polypeptides into and across the membrane of the endoplasmic reticulum (ER), providing access to the secretory pathway. In this study, we show that Ipomoeassin-F (Ipom-F), a selective inhibitor of protein entry into the ER lumen, blocks the in vitro translocation of certain secretory proteins and ER lumenal folding factors whilst barely affecting others such as albumin. The effects of Ipom-F on protein secretion from HepG2 cells are twofold: reduced ER translocation combined, in some cases, with defective ER lumenal folding. This latter issue is most likely a consequence of Ipom-F preventing the cell from replenishing its ER lumenal chaperones. Ipom-F treatment results in two cellular stress responses: firstly, an upregulation of stress-inducible cytosolic chaperones, Hsp70 and Hsp90; secondly, an atypical unfolded protein response (UPR) linked to the Ipom-F-mediated perturbation of ER function. Hence, although levels of spliced XBP1 and CHOP mRNA and ATF4 protein increase with Ipom-F, the accompanying increase in the levels of ER lumenal BiP and GRP94 seen with tunicamycin are not observed. In short, although Ipom-F reduces the biosynthetic load of newly synthesised secretory proteins entering the ER lumen, its effects on the UPR preclude the cell restoring ER homeostasis.


2021 ◽  
pp. mbc.E20-03-0190
Author(s):  
Antonia Wiegering ◽  
Renate Dildrop ◽  
Christine Vesque ◽  
Hemant Khanna ◽  
Sylvie Schneider-Maunoury ◽  
...  

A range of severe human diseases called ciliopathies are caused by the dysfunction of primary cilia. Primary cilia are cytoplasmic protrusions consisting of the basal body (BB), the axoneme and the transition zone (TZ). The BB is a modified mother centriole from which the axoneme, the microtubule-based ciliary scaffold, is formed. At the proximal end of the axoneme, the TZ functions as the ciliary gate governing ciliary protein entry and exit. Since ciliopathies often develop due to mutations in genes encoding proteins that localise to the TZ, the understanding of the mechanisms underlying TZ function is of eminent importance. Here, we show that the ciliopathy protein Rpgrip1l governs ciliary gating by ensuring the proper amount of Cep290 at the vertebrate TZ. Further, we identified the flavonoid eupatilin as a potential agent to tackle ciliopathies caused by mutations in RPGRIP1L as it rescues ciliary gating in the absence of Rpgrip1l.


2021 ◽  
Author(s):  
Owain J. Bryant ◽  
Gillian M. Fraser

AbstractType III Secretion Systems (T3SS) transport proteins from the bacterial cytosol for assembly into cell surface nanomachines or for direct delivery into target eukaryotic cells. At the core of the flagellar T3SS, the FlhAB-FliPQR export gate regulates protein entry into the export channel whilst maintaining the integrity of the cell membrane. Here, we identify critical residues in the export gate FliR plug that stabilise the closed conformation, preserving the membrane permeability barrier, and we show that the gate opens and closes in response to export substrate availability. Our data indicate that FlhAB-FliPQR gate opening, which is triggered by substrate export signals, is energised by FlhA in a proton motive force-dependent manner. We present evidence that the export substrate and the FliJ stalk of the flagellar ATPase provide mechanistically distinct, non-redundant gate-activating signals that are critical for efficient export.


2020 ◽  
Author(s):  
Antonia Wiegering ◽  
Renate Dildrop ◽  
Christine Vesque ◽  
Sylvie Schneider-Maunoury ◽  
Christoph Gerhardt

AbstractA range of severe human diseases called ciliopathies are caused by the dysfunction of primary cilia. Primary cilia are cytoplasmic protrusions consisting of the basal body (BB), the axoneme and the transition zone (TZ). The BB is a modified mother centriole from which the axoneme, the microtubule-based ciliary scaffold, is formed. At the proximal end of the axoneme, the TZ functions as the ciliary gate governing ciliary protein entry and exit. Since ciliopathies often develop due to mutations in genes encoding proteins that localise to the TZ, the understanding of the mechanisms underlying TZ function is of eminent importance. Here, we show that the ciliopathy protein Rpgrip1l governs ciliary gating by ensuring the proper amount of Cep290 at the vertebrate TZ. Further, we identified the flavonoid eupatilin as a potential agent to tackle ciliopathies caused by mutations in RPGRIP1L as it rescues ciliary gating in the absence of Rpgrip1l.


Nutrients ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 197 ◽  
Author(s):  
Anna F. Bekebrede ◽  
Jaap Keijer ◽  
Walter J. J. Gerrits ◽  
Vincent C. J. de Boer

Consumption of a high-protein diet increases protein entry into the colon. Colonic microbiota can ferment proteins, which results in the production of protein fermentation end-products, like polyamines. This review describes the effects of polyamines on biochemical, cellular and physiological processes, with a focus on the colon. Polyamines (mainly spermine, spermidine, putrescine and cadaverine) are involved in the regulation of protein translation and gene transcription. In this, the spermidine-derived hypusination modification of EIF5A plays an important role. In addition, polyamines regulate metabolic functions. Through hypusination of EIF5A, polyamines also regulate translation of mitochondrial proteins, thereby increasing their expression. They can also induce mitophagy through various pathways, which helps to remove damaged organelles and improves cell survival. In addition, polyamines increase mitochondrial substrate oxidation by increasing mitochondrial Ca2+-levels. Putrescine can even serve as an energy source for enterocytes in the small intestine. By regulating the formation of the mitochondrial permeability transition pore, polyamines help maintain mitochondrial membrane integrity. However, their catabolism may also reduce metabolic functions by depleting intracellular acetyl-CoA levels, or through production of toxic by-products. Lastly, polyamines support gut physiology, by supporting barrier function, inducing gut maturation and increasing longevity. Polyamines thus play many roles, and their impact is strongly tissue- and dose-dependent. However, whether diet-derived increases in colonic luminal polyamine levels also impact intestinal physiology has not been resolved yet.


2019 ◽  
Vol 1 (12) ◽  
pp. 1175-1176
Author(s):  
Jiyao Song ◽  
Thomas Becker

2019 ◽  
Author(s):  
Xu Liu ◽  
Xiaolin Wang ◽  
Jingxin Li ◽  
Shanshan Hu ◽  
Yuqi Deng ◽  
...  

AbstractMammalian mitochondria have small genomes encoding very limited numbers of proteins. Over one thousand proteins and noncoding RNAs encoded by nuclear genome have to be imported from the cytosol into the mitochondria. Here we report the identification of hundreds of circular RNAs (mecciRNAs) encoded by mitochondrial genome. We provide both in vitro and in vivo evidence to show that mecciRNAs facilitate mitochondrial entry of nuclear-encoded proteins by serving as molecular chaperones in the folding of imported proteins. Known components of mitochondrial protein and RNA importation such as TOM40 and PNPASE interact with mecciRNAs and regulate protein entry. Expression of mecciRNAs is regulated, and these transcripts are critical for mitochondria in adapting to physiological conditions and diseases such as stresses and cancers by modulating mitochondrial protein importation. mecciRNAs and their associated physiological roles add categories and functions to eukaryotic circular RNAs, and shed novel lights on communication between mitochondria and nucleus.


Sign in / Sign up

Export Citation Format

Share Document