scholarly journals The Type of Fat in the Diet Influences Regulatory Aminopeptidases of the Renin-Angiotensin System and Stress in the Hypothalamic-Pituitary-Adrenal Axis in Adult Wistar Rats

Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 3939
Author(s):  
Germán Domínguez-Vías ◽  
Ana Belén Segarra ◽  
Manuel Ramírez-Sánchez ◽  
Isabel Prieto

(1) Background: Prolonged feeding with a high-fat diet (HFD) acts as a stressor by activating the functions of the hypothalamic-pituitary-adrenal gland (HPA) stress axis, accompanied of hypertension by inducing the renin-angiotensin-aldosterone system. Angiotensinases enzymes are regulatory aminopeptidases of angiotensin metabolism, which together with the dipeptidyl peptidase IV (DPP-IV), pyroglutamyl- and tyrosyl-aminopeptidase (pGluAP, TyrAP), participate in cognitive, stress, metabolic and cardiovascular functions. These functions appear to be modulated by the type of fat used in the diet. (2) Methods: To analyze a possible coordinated response of aminopeptidases, their activities were simultaneously determined in the hypothalamus, adenohypophysis and adrenal gland of adult male rats fed diets enriched with monounsaturated (standard diet (S diet) supplemented with 20% virgin olive oil; VOO diet) or saturated fatty acids (diet S supplemented with 20% butter and 0.1% cholesterol; Bch diet). Aminopeptidase activities were measured by fluorimetry using 2-Naphthylamine as substrates. (3) Results: the hypothalamus did not show differences in any of the experimental diets. In the pituitary, the Bch diet stimulated the renin-angiotensin system (RAS) by increasing certain angiotensinase activities (alanyl-, arginyl- and cystinyl-aminopeptidase) with respect to the S and VOO diets. DPP-IV activity was increased with the Bch diet, and TyrAP activity decrease with the VOO diet, having both a crucial role on stress and eating behavior. In the adrenal gland, both HFDs showed an increase in angiotensinase aspartyl-aminopeptidase. The interrelation of angiotensinases activities in the tissues were depending on the type of diet. In addition, correlations were shown between angiotensinases and aminopeptidases that regulate stress and eating behavior. (4) Conclusions: Taken together, these results support that the source of fat in the diet affects several peptidases activities in the HPA axis, which could be related to alterations in RAS, stress and feeding behavior.

Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1149
Author(s):  
Germán Domínguez-Vías ◽  
Ana Belén Segarra ◽  
Manuel Ramírez-Sánchez ◽  
Isabel Prieto

(1) Background: The replacement of diets high in saturated fat (SAFA) with monounsaturated fatty acids (MUFA) is associated with better cardiovascular function and is related to the modulation of the activity of the local renin–angiotensin system (RAS) and the collagenase activity of dipeptidyl peptidase IV (DPP-IV). The objective of the work was to verify the capacity of different types of dietary fat on the regulatory activities of RAS and DPP-IV. (2) Methods: Male Wistar rats were fed for 24 weeks with three different diets: the standard diet (S), the standard diet supplemented with virgin olive oil (20%) (VOO), or with butter (20%) plus cholesterol (0.1%) (Bch). The proteolytic activities were determined by fluorometric methods in the soluble (sol) and membrane-bound (mb) fractions of the left ventricle and atrium, aorta, and plasma samples. (3) Results: With the VOO diet, angiotensinase values were significantly lower than with the Bch diet in the aorta (GluAP and ArgAP (mb)), ventricle (ArgAP (mb)) and atrium (CysAP (sol)). Significant decreases in DPP-IV (mb) activity occurred with the Bch diet in the atrium and aorta. The VOO diet significantly reduced the activity of the cardiac damage marker LeuAP (mb) in the ventricle and aorta, except for LeuAP (sol) in the ventricle, which was reduced with the Bch diet. (4) Conclusions: The introduction into the diet of a source rich in MUFA would have a beneficial cardiovascular effect on RAS homeostasis and cardiovascular functional stability.


Endocrinology ◽  
1970 ◽  
Vol 86 (4) ◽  
pp. 774-780 ◽  
Author(s):  
J. MENARD ◽  
A. MALMEJAC ◽  
P. MILLIEZ

1992 ◽  
Vol 127 (3) ◽  
pp. 210-214 ◽  
Author(s):  
Matteo Pistorello ◽  
Margherita Cimolato ◽  
Francesco Pedini ◽  
Donatella Piovan ◽  
Marco Boscaro ◽  
...  

Cardiac glycosides in man inhibit renin secretion, probably through a direct effect at the renal level (i.e. inhibition of juxtaglomerular cell Na/K ATPase). Since there is evidence that the human adrenal possesses an intrinsic renin-angiotensin system, we investigated the effect of digoxin on the in vitro generation of renin and angiotensin II/III, as well as of aldosterone, by the human adrenal gland. Minced normal adrenal tissues were studied in a superfusion system, measuring in the 15-min superfusate fractions active renin by immunoradiometric assay and angiotensin II/III and aldosterone by radioimmunoassay, respectively. In a first set of four experiments using different concentrations of digoxin in sequence for 45 min periods, digoxin 10−5, but not 10−8 and 10−6 mol/l, significantly reduced renin and angiotensin II/III output from adrenals, while no change in aldosterone was observed. In a second set of three experiments, the addition of digoxin 10−5 mol/l for 120 min caused a sustained reduction of renin and angiotensin II/III, but not of aldosterone. In the final experiment, the decrease of renin and angiotensin II/III during superfusion with digoxin 10−5 mol/l was significantly greater than that observed during superfusion with digoxin in the presence of antidigoxin antibodies. Our data indicate that digoxin at high doses reduces renin and angiotensin II/III but not aldosterone secretion by the human adrenal gland. This suggests two different effects of digoxin, probably both mediated by inhibition of the Na/K ATPase activity, on the adrenal renin-angiotensin- and aldosterone-secreting cells.


2020 ◽  
Vol 23 (1) ◽  
pp. 100-108
Author(s):  
Amanda S. Machado ◽  
Janaína R. Oliveira ◽  
Deborah de F. Lelis ◽  
Alfredo M. B. de Paula ◽  
André L. S. Guimarães ◽  
...  

Background: Obesity and non-alcoholic fatty liver disease (NAFLD) have been increasing at an alarming rate worldwide. Bifidobacterium longum (BL), a common member of the human gut microbiota, has important health benefits through several mechanisms. Objectives: We evaluated the BL supplementation effects on body metabolism and renin-angiotensin components hepatic expression in mice fed a high-fat diet. Methods: Thirty-two male mice were divided into four groups: standard diet + placebo (ST), standard diet + Bifidobacterium longum (ST + BL), high-fat diet + placebo (HFD) and high-fat diet + Bifidobacterium longum (HFD + BL). Following the obesity induction period, the ST + BL and HFD + BL groups were supplemented with Bifidobacterium longum for 4 weeks. Then, body, biochemical, histological and molecular parameters were evaluated. Results: HFD + BL mice had a significant decrease in adipose tissue mass and blood glucose levels, as well as a significant reduction in blood glucose during an intraperitoneal glucose tolerance test. The treatment also resulted in reduced levels of total cholesterol and hepatic fat accumulation. Moreover, we observed an increase in angiotensin converting enzyme 2 (ACE2) and Mas receptor (MASR) expression levels in BL-treated obese mice. Conclusions: These data demonstrate that BL may have the potential to prevent obesity and NAFLD by modulating the mRNA expression of renin-angiotensin system components.


Sign in / Sign up

Export Citation Format

Share Document